Implicit dual control based on particle filtering and forward dynamic programming
This paper develops a sampling‐based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce...
Gespeichert in:
Veröffentlicht in: | International journal of adaptive control and signal processing 2010-03, Vol.24 (3), p.155-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 3 |
container_start_page | 155 |
container_title | International journal of adaptive control and signal processing |
container_volume | 24 |
creator | Bayard, David S. Schumitzky, Alan |
description | This paper develops a sampling‐based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy‐iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling‐based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as a H‐block. Practical suggestions are given for reducing computational loads within the H‐block for real‐time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed‐loop performance with respect to other more common stochastic control approaches. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/acs.1094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2994585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753655375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4804-f83d22b4da8c3387306ef76c47093d8161ad50227170e8ab72c38064e179180c3</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYNU7LYK_QQlb_VlNH9mJpmXQlltu9CuiorQl3A3yayxmcmYzLbutzfLrot96EO4gfPj3MM9CJ1Q8o4Swt6DTvnTlC_QJI-moJRWB2hCZEOKmjNxiI5S-kVI1ih_hQ4ZpTw_NkFfZt3gnXYjNivwWId-jMHjBSRrcOjxAHF02lvcOj_a6Polht7gNsRHiAabdQ-d03iIYRmh67L-Gr1swSf7ZjeP0ffLj9-m18XNp6vZ9OKm0KUkZdFKbhhblAak5lwKTmrbilqXgjTcSFpTMBVhTFBBrISFYJpLUpeWioZKovkxOt_6DqtFZ422OTl4NUTXQVyrAE49VXr3Uy3Dg2JNU1ayygZnO4MYfq9sGlXnkrbeQ2_DKilR8bqquNiQb7ekjiGlaNv9FkrUpgCVC1CbAjJ6-n-qPfjv4hkotsCj83b9rJG6mH7dGe54l0b7Z89DvFe1yOHUj_mVuvsgbm8_z6m6438BUoeezw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753655375</pqid></control><display><type>article</type><title>Implicit dual control based on particle filtering and forward dynamic programming</title><source>Access via Wiley Online Library</source><creator>Bayard, David S. ; Schumitzky, Alan</creator><creatorcontrib>Bayard, David S. ; Schumitzky, Alan</creatorcontrib><description>This paper develops a sampling‐based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy‐iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling‐based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as a H‐block. Practical suggestions are given for reducing computational loads within the H‐block for real‐time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed‐loop performance with respect to other more common stochastic control approaches. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0890-6327</identifier><identifier>EISSN: 1099-1115</identifier><identifier>DOI: 10.1002/acs.1094</identifier><identifier>PMID: 21132112</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Active control ; Control systems ; Cost function ; Dynamic programming ; Filtering ; implicit dual control ; Mathematical models ; particle filtering ; Policies ; policy iteration ; stochastic optimal control ; Stochasticity</subject><ispartof>International journal of adaptive control and signal processing, 2010-03, Vol.24 (3), p.155-177</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4804-f83d22b4da8c3387306ef76c47093d8161ad50227170e8ab72c38064e179180c3</citedby><cites>FETCH-LOGICAL-c4804-f83d22b4da8c3387306ef76c47093d8161ad50227170e8ab72c38064e179180c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Facs.1094$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Facs.1094$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21132112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayard, David S.</creatorcontrib><creatorcontrib>Schumitzky, Alan</creatorcontrib><title>Implicit dual control based on particle filtering and forward dynamic programming</title><title>International journal of adaptive control and signal processing</title><addtitle>Int. J. Adapt. Control Signal Process</addtitle><description>This paper develops a sampling‐based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy‐iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling‐based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as a H‐block. Practical suggestions are given for reducing computational loads within the H‐block for real‐time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed‐loop performance with respect to other more common stochastic control approaches. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Active control</subject><subject>Control systems</subject><subject>Cost function</subject><subject>Dynamic programming</subject><subject>Filtering</subject><subject>implicit dual control</subject><subject>Mathematical models</subject><subject>particle filtering</subject><subject>Policies</subject><subject>policy iteration</subject><subject>stochastic optimal control</subject><subject>Stochasticity</subject><issn>0890-6327</issn><issn>1099-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxYNU7LYK_QQlb_VlNH9mJpmXQlltu9CuiorQl3A3yayxmcmYzLbutzfLrot96EO4gfPj3MM9CJ1Q8o4Swt6DTvnTlC_QJI-moJRWB2hCZEOKmjNxiI5S-kVI1ih_hQ4ZpTw_NkFfZt3gnXYjNivwWId-jMHjBSRrcOjxAHF02lvcOj_a6Polht7gNsRHiAabdQ-d03iIYRmh67L-Gr1swSf7ZjeP0ffLj9-m18XNp6vZ9OKm0KUkZdFKbhhblAak5lwKTmrbilqXgjTcSFpTMBVhTFBBrISFYJpLUpeWioZKovkxOt_6DqtFZ422OTl4NUTXQVyrAE49VXr3Uy3Dg2JNU1ayygZnO4MYfq9sGlXnkrbeQ2_DKilR8bqquNiQb7ekjiGlaNv9FkrUpgCVC1CbAjJ6-n-qPfjv4hkotsCj83b9rJG6mH7dGe54l0b7Z89DvFe1yOHUj_mVuvsgbm8_z6m6438BUoeezw</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Bayard, David S.</creator><creator>Schumitzky, Alan</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>201003</creationdate><title>Implicit dual control based on particle filtering and forward dynamic programming</title><author>Bayard, David S. ; Schumitzky, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4804-f83d22b4da8c3387306ef76c47093d8161ad50227170e8ab72c38064e179180c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active control</topic><topic>Control systems</topic><topic>Cost function</topic><topic>Dynamic programming</topic><topic>Filtering</topic><topic>implicit dual control</topic><topic>Mathematical models</topic><topic>particle filtering</topic><topic>Policies</topic><topic>policy iteration</topic><topic>stochastic optimal control</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayard, David S.</creatorcontrib><creatorcontrib>Schumitzky, Alan</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of adaptive control and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayard, David S.</au><au>Schumitzky, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit dual control based on particle filtering and forward dynamic programming</atitle><jtitle>International journal of adaptive control and signal processing</jtitle><addtitle>Int. J. Adapt. Control Signal Process</addtitle><date>2010-03</date><risdate>2010</risdate><volume>24</volume><issue>3</issue><spage>155</spage><epage>177</epage><pages>155-177</pages><issn>0890-6327</issn><eissn>1099-1115</eissn><abstract>This paper develops a sampling‐based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy‐iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling‐based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as a H‐block. Practical suggestions are given for reducing computational loads within the H‐block for real‐time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed‐loop performance with respect to other more common stochastic control approaches. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>21132112</pmid><doi>10.1002/acs.1094</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6327 |
ispartof | International journal of adaptive control and signal processing, 2010-03, Vol.24 (3), p.155-177 |
issn | 0890-6327 1099-1115 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2994585 |
source | Access via Wiley Online Library |
subjects | Active control Control systems Cost function Dynamic programming Filtering implicit dual control Mathematical models particle filtering Policies policy iteration stochastic optimal control Stochasticity |
title | Implicit dual control based on particle filtering and forward dynamic programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20dual%20control%20based%20on%20particle%20filtering%20and%20forward%20dynamic%20programming&rft.jtitle=International%20journal%20of%20adaptive%20control%20and%20signal%20processing&rft.au=Bayard,%20David%20S.&rft.date=2010-03&rft.volume=24&rft.issue=3&rft.spage=155&rft.epage=177&rft.pages=155-177&rft.issn=0890-6327&rft.eissn=1099-1115&rft_id=info:doi/10.1002/acs.1094&rft_dat=%3Cproquest_pubme%3E753655375%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753655375&rft_id=info:pmid/21132112&rfr_iscdi=true |