Neurokinin B and the hypothalamic regulation of reproduction

Abstract Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2010-12, Vol.1364, p.116-128
Hauptverfasser: Rance, Naomi E, Krajewski, Sally J, Smith, Melinda A, Cholanian, Marina, Dacks, Penny A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 116
container_title Brain research
container_volume 1364
creator Rance, Naomi E
Krajewski, Sally J
Smith, Melinda A
Cholanian, Marina
Dacks, Penny A
description Abstract Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as essential elements of the human reproductive axis. Studies over the last two decades provide evidence that a group of neurons in the hypothalamic infundibular/arcuate nucleus form an important component of this regulatory circuit. These neurons are steroid-responsive and coexpress NKB, kisspeptin, dynorphin, NK3R, and estrogen receptor α (ERα) in a variety of mammalian species. Compelling evidence in the human indicates these neurons function in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin-releasing hormone (GnRH) secretion. Moreover, in the rat, they form a bilateral, interconnected network that projects to NK3R-expressing GnRH terminals in the median eminence. This network provides an anatomical framework to explain how coordination among NKB/kisspeptin/dynorphin/NK3R/ERα neurons could mediate feedback information from the gonads to modulate pulsatile GnRH secretion. There is substantial (but indirect) evidence that this network may be part of the neural circuitry known as the “GnRH pulse generator,” with NK3R signaling as an important component. This theory provides a compelling explanation for the occurrence of hypogonadotropic hypogonadism in patients with inactivating mutations in the TAC3 or TACR3 genes. Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function.
doi_str_mv 10.1016/j.brainres.2010.08.059
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2992576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899310018731</els_id><sourcerecordid>856760405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-a6d533e964e510e492083115a74a8c042cbe23da26c2e717ec7cd5c17b107ff73</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EotvCK1S5cdplbMd2IqEKqKAgVXAAziOvM-l6m7UXO6m0b4-jbSvg0pM19j__zPgbxs45rDhw_Xa7WifrQ6K8ElAuoVmBap-xBW-MWGpRw3O2AAC9bNpWnrDTnLcllLKFl-xEQAOgGrFg777RlOKtDz5UHysbumrcULU57OO4sYPdeVclupkGO_oYqtiXaJ9iN7k5fsVe9HbI9Pr-PGO_Pn_6efllef396uvlh-ul00KOS6s7JSW1uibFgeq2lJecK2tq2ziohVuTkJ0V2gky3JAzrlOOmzUH0_dGnrGLo-9-Wu-ocxTGZAfcJ7-z6YDRevz3JfgN3sQ7FG0rlNHF4M29QYq_J8oj7nx2NAw2UJwyNkobDTWop5VcqTKAaIpSH5UuxZwT9Y_9cMCZEW7xgRHOjBAaLIxK4vnf0zymPUApgvdHAZU_vfOUMDtPwVHnE7kRu-ifrnHxn4UbCmNnh1s6UN7GKYVCDDlmgYA_5k2ZF4UDlAWSXP4BI827sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815549228</pqid></control><display><type>article</type><title>Neurokinin B and the hypothalamic regulation of reproduction</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rance, Naomi E ; Krajewski, Sally J ; Smith, Melinda A ; Cholanian, Marina ; Dacks, Penny A</creator><creatorcontrib>Rance, Naomi E ; Krajewski, Sally J ; Smith, Melinda A ; Cholanian, Marina ; Dacks, Penny A</creatorcontrib><description>Abstract Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as essential elements of the human reproductive axis. Studies over the last two decades provide evidence that a group of neurons in the hypothalamic infundibular/arcuate nucleus form an important component of this regulatory circuit. These neurons are steroid-responsive and coexpress NKB, kisspeptin, dynorphin, NK3R, and estrogen receptor α (ERα) in a variety of mammalian species. Compelling evidence in the human indicates these neurons function in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin-releasing hormone (GnRH) secretion. Moreover, in the rat, they form a bilateral, interconnected network that projects to NK3R-expressing GnRH terminals in the median eminence. This network provides an anatomical framework to explain how coordination among NKB/kisspeptin/dynorphin/NK3R/ERα neurons could mediate feedback information from the gonads to modulate pulsatile GnRH secretion. There is substantial (but indirect) evidence that this network may be part of the neural circuitry known as the “GnRH pulse generator,” with NK3R signaling as an important component. This theory provides a compelling explanation for the occurrence of hypogonadotropic hypogonadism in patients with inactivating mutations in the TAC3 or TACR3 genes. Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2010.08.059</identifier><identifier>PMID: 20800582</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aging - physiology ; Animals ; Arcuate nucleus ; Arcuate Nucleus of Hypothalamus - cytology ; Arcuate Nucleus of Hypothalamus - physiology ; Dynorphin ; Dynorphins - physiology ; Estrogen ; Estrogen receptor ; Estrogens - physiology ; Female ; Gene Expression - genetics ; GnRH ; Humans ; Hypogonadotropic hypogonadism ; Hypothalamus - physiology ; Kisspeptin ; Kisspeptins ; Luteinizing hormone ; Macaca mulatta ; Male ; Menopause ; Neurokinin B - physiology ; Neurology ; Neurons - physiology ; Postmenopause - physiology ; Pregnancy ; Receptors, Neurokinin-3 - agonists ; Receptors, Neurokinin-3 - genetics ; Receptors, Neurokinin-3 - physiology ; Reproduction - physiology ; Sex Characteristics ; Signal Transduction - physiology ; Tachykinin ; Terminology as Topic ; Tumor Suppressor Proteins - physiology</subject><ispartof>Brain research, 2010-12, Vol.1364, p.116-128</ispartof><rights>2010</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-a6d533e964e510e492083115a74a8c042cbe23da26c2e717ec7cd5c17b107ff73</citedby><cites>FETCH-LOGICAL-c623t-a6d533e964e510e492083115a74a8c042cbe23da26c2e717ec7cd5c17b107ff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2010.08.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20800582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rance, Naomi E</creatorcontrib><creatorcontrib>Krajewski, Sally J</creatorcontrib><creatorcontrib>Smith, Melinda A</creatorcontrib><creatorcontrib>Cholanian, Marina</creatorcontrib><creatorcontrib>Dacks, Penny A</creatorcontrib><title>Neurokinin B and the hypothalamic regulation of reproduction</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as essential elements of the human reproductive axis. Studies over the last two decades provide evidence that a group of neurons in the hypothalamic infundibular/arcuate nucleus form an important component of this regulatory circuit. These neurons are steroid-responsive and coexpress NKB, kisspeptin, dynorphin, NK3R, and estrogen receptor α (ERα) in a variety of mammalian species. Compelling evidence in the human indicates these neurons function in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin-releasing hormone (GnRH) secretion. Moreover, in the rat, they form a bilateral, interconnected network that projects to NK3R-expressing GnRH terminals in the median eminence. This network provides an anatomical framework to explain how coordination among NKB/kisspeptin/dynorphin/NK3R/ERα neurons could mediate feedback information from the gonads to modulate pulsatile GnRH secretion. There is substantial (but indirect) evidence that this network may be part of the neural circuitry known as the “GnRH pulse generator,” with NK3R signaling as an important component. This theory provides a compelling explanation for the occurrence of hypogonadotropic hypogonadism in patients with inactivating mutations in the TAC3 or TACR3 genes. Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function.</description><subject>Aging - physiology</subject><subject>Animals</subject><subject>Arcuate nucleus</subject><subject>Arcuate Nucleus of Hypothalamus - cytology</subject><subject>Arcuate Nucleus of Hypothalamus - physiology</subject><subject>Dynorphin</subject><subject>Dynorphins - physiology</subject><subject>Estrogen</subject><subject>Estrogen receptor</subject><subject>Estrogens - physiology</subject><subject>Female</subject><subject>Gene Expression - genetics</subject><subject>GnRH</subject><subject>Humans</subject><subject>Hypogonadotropic hypogonadism</subject><subject>Hypothalamus - physiology</subject><subject>Kisspeptin</subject><subject>Kisspeptins</subject><subject>Luteinizing hormone</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Menopause</subject><subject>Neurokinin B - physiology</subject><subject>Neurology</subject><subject>Neurons - physiology</subject><subject>Postmenopause - physiology</subject><subject>Pregnancy</subject><subject>Receptors, Neurokinin-3 - agonists</subject><subject>Receptors, Neurokinin-3 - genetics</subject><subject>Receptors, Neurokinin-3 - physiology</subject><subject>Reproduction - physiology</subject><subject>Sex Characteristics</subject><subject>Signal Transduction - physiology</subject><subject>Tachykinin</subject><subject>Terminology as Topic</subject><subject>Tumor Suppressor Proteins - physiology</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhi0EotvCK1S5cdplbMd2IqEKqKAgVXAAziOvM-l6m7UXO6m0b4-jbSvg0pM19j__zPgbxs45rDhw_Xa7WifrQ6K8ElAuoVmBap-xBW-MWGpRw3O2AAC9bNpWnrDTnLcllLKFl-xEQAOgGrFg777RlOKtDz5UHysbumrcULU57OO4sYPdeVclupkGO_oYqtiXaJ9iN7k5fsVe9HbI9Pr-PGO_Pn_6efllef396uvlh-ul00KOS6s7JSW1uibFgeq2lJecK2tq2ziohVuTkJ0V2gky3JAzrlOOmzUH0_dGnrGLo-9-Wu-ocxTGZAfcJ7-z6YDRevz3JfgN3sQ7FG0rlNHF4M29QYq_J8oj7nx2NAw2UJwyNkobDTWop5VcqTKAaIpSH5UuxZwT9Y_9cMCZEW7xgRHOjBAaLIxK4vnf0zymPUApgvdHAZU_vfOUMDtPwVHnE7kRu-ifrnHxn4UbCmNnh1s6UN7GKYVCDDlmgYA_5k2ZF4UDlAWSXP4BI827sw</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Rance, Naomi E</creator><creator>Krajewski, Sally J</creator><creator>Smith, Melinda A</creator><creator>Cholanian, Marina</creator><creator>Dacks, Penny A</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20101210</creationdate><title>Neurokinin B and the hypothalamic regulation of reproduction</title><author>Rance, Naomi E ; Krajewski, Sally J ; Smith, Melinda A ; Cholanian, Marina ; Dacks, Penny A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-a6d533e964e510e492083115a74a8c042cbe23da26c2e717ec7cd5c17b107ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aging - physiology</topic><topic>Animals</topic><topic>Arcuate nucleus</topic><topic>Arcuate Nucleus of Hypothalamus - cytology</topic><topic>Arcuate Nucleus of Hypothalamus - physiology</topic><topic>Dynorphin</topic><topic>Dynorphins - physiology</topic><topic>Estrogen</topic><topic>Estrogen receptor</topic><topic>Estrogens - physiology</topic><topic>Female</topic><topic>Gene Expression - genetics</topic><topic>GnRH</topic><topic>Humans</topic><topic>Hypogonadotropic hypogonadism</topic><topic>Hypothalamus - physiology</topic><topic>Kisspeptin</topic><topic>Kisspeptins</topic><topic>Luteinizing hormone</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Menopause</topic><topic>Neurokinin B - physiology</topic><topic>Neurology</topic><topic>Neurons - physiology</topic><topic>Postmenopause - physiology</topic><topic>Pregnancy</topic><topic>Receptors, Neurokinin-3 - agonists</topic><topic>Receptors, Neurokinin-3 - genetics</topic><topic>Receptors, Neurokinin-3 - physiology</topic><topic>Reproduction - physiology</topic><topic>Sex Characteristics</topic><topic>Signal Transduction - physiology</topic><topic>Tachykinin</topic><topic>Terminology as Topic</topic><topic>Tumor Suppressor Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rance, Naomi E</creatorcontrib><creatorcontrib>Krajewski, Sally J</creatorcontrib><creatorcontrib>Smith, Melinda A</creatorcontrib><creatorcontrib>Cholanian, Marina</creatorcontrib><creatorcontrib>Dacks, Penny A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rance, Naomi E</au><au>Krajewski, Sally J</au><au>Smith, Melinda A</au><au>Cholanian, Marina</au><au>Dacks, Penny A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurokinin B and the hypothalamic regulation of reproduction</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2010-12-10</date><risdate>2010</risdate><volume>1364</volume><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><abstract>Abstract Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as essential elements of the human reproductive axis. Studies over the last two decades provide evidence that a group of neurons in the hypothalamic infundibular/arcuate nucleus form an important component of this regulatory circuit. These neurons are steroid-responsive and coexpress NKB, kisspeptin, dynorphin, NK3R, and estrogen receptor α (ERα) in a variety of mammalian species. Compelling evidence in the human indicates these neurons function in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin-releasing hormone (GnRH) secretion. Moreover, in the rat, they form a bilateral, interconnected network that projects to NK3R-expressing GnRH terminals in the median eminence. This network provides an anatomical framework to explain how coordination among NKB/kisspeptin/dynorphin/NK3R/ERα neurons could mediate feedback information from the gonads to modulate pulsatile GnRH secretion. There is substantial (but indirect) evidence that this network may be part of the neural circuitry known as the “GnRH pulse generator,” with NK3R signaling as an important component. This theory provides a compelling explanation for the occurrence of hypogonadotropic hypogonadism in patients with inactivating mutations in the TAC3 or TACR3 genes. Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20800582</pmid><doi>10.1016/j.brainres.2010.08.059</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2010-12, Vol.1364, p.116-128
issn 0006-8993
1872-6240
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2992576
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Aging - physiology
Animals
Arcuate nucleus
Arcuate Nucleus of Hypothalamus - cytology
Arcuate Nucleus of Hypothalamus - physiology
Dynorphin
Dynorphins - physiology
Estrogen
Estrogen receptor
Estrogens - physiology
Female
Gene Expression - genetics
GnRH
Humans
Hypogonadotropic hypogonadism
Hypothalamus - physiology
Kisspeptin
Kisspeptins
Luteinizing hormone
Macaca mulatta
Male
Menopause
Neurokinin B - physiology
Neurology
Neurons - physiology
Postmenopause - physiology
Pregnancy
Receptors, Neurokinin-3 - agonists
Receptors, Neurokinin-3 - genetics
Receptors, Neurokinin-3 - physiology
Reproduction - physiology
Sex Characteristics
Signal Transduction - physiology
Tachykinin
Terminology as Topic
Tumor Suppressor Proteins - physiology
title Neurokinin B and the hypothalamic regulation of reproduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurokinin%20B%20and%20the%20hypothalamic%20regulation%20of%20reproduction&rft.jtitle=Brain%20research&rft.au=Rance,%20Naomi%20E&rft.date=2010-12-10&rft.volume=1364&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=0006-8993&rft.eissn=1872-6240&rft_id=info:doi/10.1016/j.brainres.2010.08.059&rft_dat=%3Cproquest_pubme%3E856760405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815549228&rft_id=info:pmid/20800582&rft_els_id=S0006899310018731&rfr_iscdi=true