Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging

The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of anatomy 2010-10, Vol.217 (4), p.400-417
Hauptverfasser: Vasung, Lana, Huang, Hao, Jovanov‐Milošević, Nataša, Pletikos, Mihovil, Mori, Susumu, Kostović, Ivica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 4
container_start_page 400
container_title Journal of anatomy
container_volume 217
creator Vasung, Lana
Huang, Hao
Jovanov‐Milošević, Nataša
Pletikos, Mihovil
Mori, Susumu
Kostović, Ivica
description The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.
doi_str_mv 10.1111/j.1469-7580.2010.01260.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2992416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762478148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oKxh2rrqFgiooE00m438mmY2uCUVfuuhUQQvUTLcrFz6Az-iTSNljR3eygcs593DJhxCmZEXLer5dUd60S1FLsqpIuSW0ashqfw8tTsJ9tCCkokspZHWGHqW0JYQy0vKH6KwiDWkJowv0_TXcwBB2I_iMg8V6H7we8E7n_lYfEnYe5x5wP43aYwu5aDYGn8PPbz8GN3bO4C5q51_g3qUcTA-jM8Vkeh21yRDdV51d8Fj7NV47a6c0Vxl8ChG7UW-c3zxGD6weEjy528_R57dvPl2-X15dv_tweXG1NFwwsgRZ151uBGghOk5lLddUGrDGatNyI6AD1mkmWJGYbInkbSvqWQJOmO3YOXp1zN1N3QhrU_4c9aB2scwRDypop_5VvOvVJtyoqm0rTpsS8OwuIIYvE6SsRpcMDIP2EKakRFNxISmXxSmPThNDShHs6RVK1MxQbdWMSs2o1MxQ_Wao9qX16d9Tnhr_QCuGl0fDrRvg8N_B6uP1xXxivwACCbBC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762478148</pqid></control><display><type>article</type><title>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Vasung, Lana ; Huang, Hao ; Jovanov‐Milošević, Nataša ; Pletikos, Mihovil ; Mori, Susumu ; Kostović, Ivica</creator><creatorcontrib>Vasung, Lana ; Huang, Hao ; Jovanov‐Milošević, Nataša ; Pletikos, Mihovil ; Mori, Susumu ; Kostović, Ivica</creatorcontrib><description>The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/j.1469-7580.2010.01260.x</identifier><identifier>PMID: 20609031</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcholinesterase - analysis ; axonal pathways ; Axons - metabolism ; Axons - physiology ; Axons - ultrastructure ; Cerebral Cortex - embryology ; Cerebral Cortex - growth &amp; development ; Cerebral Cortex - physiology ; development ; Diffusion Tensor Imaging ; Fetal Development - physiology ; fronto‐limbic connectivity ; Histocytochemistry ; human fetal brain ; Humans ; Neural Pathways - embryology ; Neural Pathways - growth &amp; development ; Neural Pathways - physiology ; Neurofilament Proteins - analysis ; Reviews &amp; Original ; subplate ; Synaptosomal-Associated Protein 25 - analysis ; Thalamus - embryology ; Thalamus - growth &amp; development ; Thalamus - metabolism</subject><ispartof>Journal of anatomy, 2010-10, Vol.217 (4), p.400-417</ispartof><rights>2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland</rights><rights>2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.</rights><rights>Copyright © 2010 Anatomical Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</citedby><cites>FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992416/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992416/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20609031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasung, Lana</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Jovanov‐Milošević, Nataša</creatorcontrib><creatorcontrib>Pletikos, Mihovil</creatorcontrib><creatorcontrib>Mori, Susumu</creatorcontrib><creatorcontrib>Kostović, Ivica</creatorcontrib><title>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</title><title>Journal of anatomy</title><addtitle>J Anat</addtitle><description>The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.</description><subject>Acetylcholinesterase - analysis</subject><subject>axonal pathways</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Cerebral Cortex - physiology</subject><subject>development</subject><subject>Diffusion Tensor Imaging</subject><subject>Fetal Development - physiology</subject><subject>fronto‐limbic connectivity</subject><subject>Histocytochemistry</subject><subject>human fetal brain</subject><subject>Humans</subject><subject>Neural Pathways - embryology</subject><subject>Neural Pathways - growth &amp; development</subject><subject>Neural Pathways - physiology</subject><subject>Neurofilament Proteins - analysis</subject><subject>Reviews &amp; Original</subject><subject>subplate</subject><subject>Synaptosomal-Associated Protein 25 - analysis</subject><subject>Thalamus - embryology</subject><subject>Thalamus - growth &amp; development</subject><subject>Thalamus - metabolism</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oKxh2rrqFgiooE00m438mmY2uCUVfuuhUQQvUTLcrFz6Az-iTSNljR3eygcs593DJhxCmZEXLer5dUd60S1FLsqpIuSW0ashqfw8tTsJ9tCCkokspZHWGHqW0JYQy0vKH6KwiDWkJowv0_TXcwBB2I_iMg8V6H7we8E7n_lYfEnYe5x5wP43aYwu5aDYGn8PPbz8GN3bO4C5q51_g3qUcTA-jM8Vkeh21yRDdV51d8Fj7NV47a6c0Vxl8ChG7UW-c3zxGD6weEjy528_R57dvPl2-X15dv_tweXG1NFwwsgRZ151uBGghOk5lLddUGrDGatNyI6AD1mkmWJGYbInkbSvqWQJOmO3YOXp1zN1N3QhrU_4c9aB2scwRDypop_5VvOvVJtyoqm0rTpsS8OwuIIYvE6SsRpcMDIP2EKakRFNxISmXxSmPThNDShHs6RVK1MxQbdWMSs2o1MxQ_Wao9qX16d9Tnhr_QCuGl0fDrRvg8N_B6uP1xXxivwACCbBC</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Vasung, Lana</creator><creator>Huang, Hao</creator><creator>Jovanov‐Milošević, Nataša</creator><creator>Pletikos, Mihovil</creator><creator>Mori, Susumu</creator><creator>Kostović, Ivica</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201010</creationdate><title>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</title><author>Vasung, Lana ; Huang, Hao ; Jovanov‐Milošević, Nataša ; Pletikos, Mihovil ; Mori, Susumu ; Kostović, Ivica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetylcholinesterase - analysis</topic><topic>axonal pathways</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Cerebral Cortex - physiology</topic><topic>development</topic><topic>Diffusion Tensor Imaging</topic><topic>Fetal Development - physiology</topic><topic>fronto‐limbic connectivity</topic><topic>Histocytochemistry</topic><topic>human fetal brain</topic><topic>Humans</topic><topic>Neural Pathways - embryology</topic><topic>Neural Pathways - growth &amp; development</topic><topic>Neural Pathways - physiology</topic><topic>Neurofilament Proteins - analysis</topic><topic>Reviews &amp; Original</topic><topic>subplate</topic><topic>Synaptosomal-Associated Protein 25 - analysis</topic><topic>Thalamus - embryology</topic><topic>Thalamus - growth &amp; development</topic><topic>Thalamus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasung, Lana</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Jovanov‐Milošević, Nataša</creatorcontrib><creatorcontrib>Pletikos, Mihovil</creatorcontrib><creatorcontrib>Mori, Susumu</creatorcontrib><creatorcontrib>Kostović, Ivica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasung, Lana</au><au>Huang, Hao</au><au>Jovanov‐Milošević, Nataša</au><au>Pletikos, Mihovil</au><au>Mori, Susumu</au><au>Kostović, Ivica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</atitle><jtitle>Journal of anatomy</jtitle><addtitle>J Anat</addtitle><date>2010-10</date><risdate>2010</risdate><volume>217</volume><issue>4</issue><spage>400</spage><epage>417</epage><pages>400-417</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><abstract>The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20609031</pmid><doi>10.1111/j.1469-7580.2010.01260.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8782
ispartof Journal of anatomy, 2010-10, Vol.217 (4), p.400-417
issn 0021-8782
1469-7580
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2992416
source MEDLINE; Access via Wiley Online Library; IngentaConnect Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Acetylcholinesterase - analysis
axonal pathways
Axons - metabolism
Axons - physiology
Axons - ultrastructure
Cerebral Cortex - embryology
Cerebral Cortex - growth & development
Cerebral Cortex - physiology
development
Diffusion Tensor Imaging
Fetal Development - physiology
fronto‐limbic connectivity
Histocytochemistry
human fetal brain
Humans
Neural Pathways - embryology
Neural Pathways - growth & development
Neural Pathways - physiology
Neurofilament Proteins - analysis
Reviews & Original
subplate
Synaptosomal-Associated Protein 25 - analysis
Thalamus - embryology
Thalamus - growth & development
Thalamus - metabolism
title Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20axonal%20pathways%20in%20the%20human%20fetal%20fronto%E2%80%90limbic%20brain:%20histochemical%20characterization%20and%20diffusion%20tensor%20imaging&rft.jtitle=Journal%20of%20anatomy&rft.au=Vasung,%20Lana&rft.date=2010-10&rft.volume=217&rft.issue=4&rft.spage=400&rft.epage=417&rft.pages=400-417&rft.issn=0021-8782&rft.eissn=1469-7580&rft_id=info:doi/10.1111/j.1469-7580.2010.01260.x&rft_dat=%3Cproquest_pubme%3E762478148%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762478148&rft_id=info:pmid/20609031&rfr_iscdi=true