Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging
The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (ac...
Gespeichert in:
Veröffentlicht in: | Journal of anatomy 2010-10, Vol.217 (4), p.400-417 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 4 |
container_start_page | 400 |
container_title | Journal of anatomy |
container_volume | 217 |
creator | Vasung, Lana Huang, Hao Jovanov‐Milošević, Nataša Pletikos, Mihovil Mori, Susumu Kostović, Ivica |
description | The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter. |
doi_str_mv | 10.1111/j.1469-7580.2010.01260.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2992416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762478148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oKxh2rrqFgiooE00m438mmY2uCUVfuuhUQQvUTLcrFz6Az-iTSNljR3eygcs593DJhxCmZEXLer5dUd60S1FLsqpIuSW0ashqfw8tTsJ9tCCkokspZHWGHqW0JYQy0vKH6KwiDWkJowv0_TXcwBB2I_iMg8V6H7we8E7n_lYfEnYe5x5wP43aYwu5aDYGn8PPbz8GN3bO4C5q51_g3qUcTA-jM8Vkeh21yRDdV51d8Fj7NV47a6c0Vxl8ChG7UW-c3zxGD6weEjy528_R57dvPl2-X15dv_tweXG1NFwwsgRZ151uBGghOk5lLddUGrDGatNyI6AD1mkmWJGYbInkbSvqWQJOmO3YOXp1zN1N3QhrU_4c9aB2scwRDypop_5VvOvVJtyoqm0rTpsS8OwuIIYvE6SsRpcMDIP2EKakRFNxISmXxSmPThNDShHs6RVK1MxQbdWMSs2o1MxQ_Wao9qX16d9Tnhr_QCuGl0fDrRvg8N_B6uP1xXxivwACCbBC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762478148</pqid></control><display><type>article</type><title>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Vasung, Lana ; Huang, Hao ; Jovanov‐Milošević, Nataša ; Pletikos, Mihovil ; Mori, Susumu ; Kostović, Ivica</creator><creatorcontrib>Vasung, Lana ; Huang, Hao ; Jovanov‐Milošević, Nataša ; Pletikos, Mihovil ; Mori, Susumu ; Kostović, Ivica</creatorcontrib><description>The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/j.1469-7580.2010.01260.x</identifier><identifier>PMID: 20609031</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcholinesterase - analysis ; axonal pathways ; Axons - metabolism ; Axons - physiology ; Axons - ultrastructure ; Cerebral Cortex - embryology ; Cerebral Cortex - growth & development ; Cerebral Cortex - physiology ; development ; Diffusion Tensor Imaging ; Fetal Development - physiology ; fronto‐limbic connectivity ; Histocytochemistry ; human fetal brain ; Humans ; Neural Pathways - embryology ; Neural Pathways - growth & development ; Neural Pathways - physiology ; Neurofilament Proteins - analysis ; Reviews & Original ; subplate ; Synaptosomal-Associated Protein 25 - analysis ; Thalamus - embryology ; Thalamus - growth & development ; Thalamus - metabolism</subject><ispartof>Journal of anatomy, 2010-10, Vol.217 (4), p.400-417</ispartof><rights>2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland</rights><rights>2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.</rights><rights>Copyright © 2010 Anatomical Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</citedby><cites>FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992416/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992416/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20609031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasung, Lana</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Jovanov‐Milošević, Nataša</creatorcontrib><creatorcontrib>Pletikos, Mihovil</creatorcontrib><creatorcontrib>Mori, Susumu</creatorcontrib><creatorcontrib>Kostović, Ivica</creatorcontrib><title>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</title><title>Journal of anatomy</title><addtitle>J Anat</addtitle><description>The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.</description><subject>Acetylcholinesterase - analysis</subject><subject>axonal pathways</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - growth & development</subject><subject>Cerebral Cortex - physiology</subject><subject>development</subject><subject>Diffusion Tensor Imaging</subject><subject>Fetal Development - physiology</subject><subject>fronto‐limbic connectivity</subject><subject>Histocytochemistry</subject><subject>human fetal brain</subject><subject>Humans</subject><subject>Neural Pathways - embryology</subject><subject>Neural Pathways - growth & development</subject><subject>Neural Pathways - physiology</subject><subject>Neurofilament Proteins - analysis</subject><subject>Reviews & Original</subject><subject>subplate</subject><subject>Synaptosomal-Associated Protein 25 - analysis</subject><subject>Thalamus - embryology</subject><subject>Thalamus - growth & development</subject><subject>Thalamus - metabolism</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oKxh2rrqFgiooE00m438mmY2uCUVfuuhUQQvUTLcrFz6Az-iTSNljR3eygcs593DJhxCmZEXLer5dUd60S1FLsqpIuSW0ashqfw8tTsJ9tCCkokspZHWGHqW0JYQy0vKH6KwiDWkJowv0_TXcwBB2I_iMg8V6H7we8E7n_lYfEnYe5x5wP43aYwu5aDYGn8PPbz8GN3bO4C5q51_g3qUcTA-jM8Vkeh21yRDdV51d8Fj7NV47a6c0Vxl8ChG7UW-c3zxGD6weEjy528_R57dvPl2-X15dv_tweXG1NFwwsgRZ151uBGghOk5lLddUGrDGatNyI6AD1mkmWJGYbInkbSvqWQJOmO3YOXp1zN1N3QhrU_4c9aB2scwRDypop_5VvOvVJtyoqm0rTpsS8OwuIIYvE6SsRpcMDIP2EKakRFNxISmXxSmPThNDShHs6RVK1MxQbdWMSs2o1MxQ_Wao9qX16d9Tnhr_QCuGl0fDrRvg8N_B6uP1xXxivwACCbBC</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Vasung, Lana</creator><creator>Huang, Hao</creator><creator>Jovanov‐Milošević, Nataša</creator><creator>Pletikos, Mihovil</creator><creator>Mori, Susumu</creator><creator>Kostović, Ivica</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201010</creationdate><title>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</title><author>Vasung, Lana ; Huang, Hao ; Jovanov‐Milošević, Nataša ; Pletikos, Mihovil ; Mori, Susumu ; Kostović, Ivica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-e855ba67ea77b41858d18cefcfac94c7ebe3ba3731853890849975c94ce403fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetylcholinesterase - analysis</topic><topic>axonal pathways</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - growth & development</topic><topic>Cerebral Cortex - physiology</topic><topic>development</topic><topic>Diffusion Tensor Imaging</topic><topic>Fetal Development - physiology</topic><topic>fronto‐limbic connectivity</topic><topic>Histocytochemistry</topic><topic>human fetal brain</topic><topic>Humans</topic><topic>Neural Pathways - embryology</topic><topic>Neural Pathways - growth & development</topic><topic>Neural Pathways - physiology</topic><topic>Neurofilament Proteins - analysis</topic><topic>Reviews & Original</topic><topic>subplate</topic><topic>Synaptosomal-Associated Protein 25 - analysis</topic><topic>Thalamus - embryology</topic><topic>Thalamus - growth & development</topic><topic>Thalamus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasung, Lana</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Jovanov‐Milošević, Nataša</creatorcontrib><creatorcontrib>Pletikos, Mihovil</creatorcontrib><creatorcontrib>Mori, Susumu</creatorcontrib><creatorcontrib>Kostović, Ivica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasung, Lana</au><au>Huang, Hao</au><au>Jovanov‐Milošević, Nataša</au><au>Pletikos, Mihovil</au><au>Mori, Susumu</au><au>Kostović, Ivica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging</atitle><jtitle>Journal of anatomy</jtitle><addtitle>J Anat</addtitle><date>2010-10</date><risdate>2010</risdate><volume>217</volume><issue>4</issue><spage>400</spage><epage>417</epage><pages>400-417</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><abstract>The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP‐25 (SNAP‐25‐immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico‐frontal pathways (external capsule, cerebral stalk–internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13–14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24–26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ‘waiting’ compartments during the path‐finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20609031</pmid><doi>10.1111/j.1469-7580.2010.01260.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8782 |
ispartof | Journal of anatomy, 2010-10, Vol.217 (4), p.400-417 |
issn | 0021-8782 1469-7580 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2992416 |
source | MEDLINE; Access via Wiley Online Library; IngentaConnect Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Acetylcholinesterase - analysis axonal pathways Axons - metabolism Axons - physiology Axons - ultrastructure Cerebral Cortex - embryology Cerebral Cortex - growth & development Cerebral Cortex - physiology development Diffusion Tensor Imaging Fetal Development - physiology fronto‐limbic connectivity Histocytochemistry human fetal brain Humans Neural Pathways - embryology Neural Pathways - growth & development Neural Pathways - physiology Neurofilament Proteins - analysis Reviews & Original subplate Synaptosomal-Associated Protein 25 - analysis Thalamus - embryology Thalamus - growth & development Thalamus - metabolism |
title | Development of axonal pathways in the human fetal fronto‐limbic brain: histochemical characterization and diffusion tensor imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20axonal%20pathways%20in%20the%20human%20fetal%20fronto%E2%80%90limbic%20brain:%20histochemical%20characterization%20and%20diffusion%20tensor%20imaging&rft.jtitle=Journal%20of%20anatomy&rft.au=Vasung,%20Lana&rft.date=2010-10&rft.volume=217&rft.issue=4&rft.spage=400&rft.epage=417&rft.pages=400-417&rft.issn=0021-8782&rft.eissn=1469-7580&rft_id=info:doi/10.1111/j.1469-7580.2010.01260.x&rft_dat=%3Cproquest_pubme%3E762478148%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762478148&rft_id=info:pmid/20609031&rfr_iscdi=true |