Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation

Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell–biomaterial interactions have largely been studied by introducing ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-01, Vol.32 (1), p.48-56
Hauptverfasser: Bratt-Leal, Andrés M, Carpenedo, Richard L, Ungrin, Mark D, Zandstra, Peter W, McDevitt, Todd C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 48
container_title Biomaterials
container_volume 32
creator Bratt-Leal, Andrés M
Carpenedo, Richard L
Ungrin, Mark D
Zandstra, Peter W
McDevitt, Todd C
description Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell–biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell–biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.
doi_str_mv 10.1016/j.biomaterials.2010.08.113
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2987521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961210011518</els_id><sourcerecordid>1663601476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-f1327e9574bb091fb4b325bcf24ec58128235421a56f6010dce2a9e65ca1f3a83</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILoW_ABEXuGTxOLHjcKiEylelShxKz5bjjBcvSRxsp1L_PQ5bqoUDwhfb8948z_gNIS-BboGCeLPfds6POmFweohbRjNA5RagekA2IBtZ8pbyh2RDoWZlK4CdkCcx7mm-05o9JieMSlGDqDfEXUzGh9kHnZyfCm-LY-3CTcW4DMkZHIZl0KHQu13AXcZjMfo-h9bTPCzBzT7hlIqYcCxWetE7azHkmPul_ZQ8slkSn93tp-T644ev55_Lyy-fLs7fXZZGtCKVFirWYMubuutoC7aru4rxzlhWo-ESmGQVrxloLqzInfcGmW5RcKPBVlpWp-TsoDsv3YgZnlLQg5qDG3W4VV479ScyuW9q528Ua2XDGWSBV3cCwf9YMCY1urh2pCf0S1SSc9ECq9anXv-TCUJUuca6EZn69kA1wccY0N4XBFStrqq9Ov55tbqqqFTZ1Zz8_Lil-9TfNmbCiwPBaq_0Lriorq-yAqd5CSaazHh_YGD--huHQUXjcDLYu4Amqd67_6vk7C8ZM7jJGT18x1uMe7-Eac0BFZmi6mqdwHUAIc8ecJDVT3C13B4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663601476</pqid></control><display><type>article</type><title>Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bratt-Leal, Andrés M ; Carpenedo, Richard L ; Ungrin, Mark D ; Zandstra, Peter W ; McDevitt, Todd C</creator><creatorcontrib>Bratt-Leal, Andrés M ; Carpenedo, Richard L ; Ungrin, Mark D ; Zandstra, Peter W ; McDevitt, Todd C</creatorcontrib><description>Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell–biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell–biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.08.113</identifier><identifier>PMID: 20864164</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>adhesion ; Advanced Basic Science ; agarose ; Aggregates ; Animals ; biocompatible materials ; Biocompatible Materials - pharmacology ; cell aggregates ; Cell Aggregation ; Cell Aggregation - drug effects ; cell differentiation ; Cell Differentiation - drug effects ; Cell Survival ; Cell Survival - drug effects ; cell suspension culture ; cell viability ; Cell-Derived Microparticles ; Cell-Derived Microparticles - metabolism ; Cell-Derived Microparticles - ultrastructure ; Cells, Cultured ; cellular microenvironment ; cytology ; Dentistry ; Differentiation ; drug effects ; encapsulation ; extracellular matrix ; gelatin ; gene expression ; Gene Expression Regulation ; Gene Expression Regulation - drug effects ; genes ; hydrocolloids ; medicine ; metabolism ; Mice ; Microparticles ; pharmacology ; Phenotype ; Pluripotent Stem Cells ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - drug effects ; Pluripotent Stem Cells - metabolism ; protein synthesis ; Spheroids ; Spheroids, Cellular ; Spheroids, Cellular - metabolism ; stem cells ; tissue engineering ; tissue repair ; ultrastructure</subject><ispartof>Biomaterials, 2011-01, Vol.32 (1), p.48-56</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-f1327e9574bb091fb4b325bcf24ec58128235421a56f6010dce2a9e65ca1f3a83</citedby><cites>FETCH-LOGICAL-c696t-f1327e9574bb091fb4b325bcf24ec58128235421a56f6010dce2a9e65ca1f3a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.08.113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20864164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bratt-Leal, Andrés M</creatorcontrib><creatorcontrib>Carpenedo, Richard L</creatorcontrib><creatorcontrib>Ungrin, Mark D</creatorcontrib><creatorcontrib>Zandstra, Peter W</creatorcontrib><creatorcontrib>McDevitt, Todd C</creatorcontrib><title>Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell–biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell–biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.</description><subject>adhesion</subject><subject>Advanced Basic Science</subject><subject>agarose</subject><subject>Aggregates</subject><subject>Animals</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - pharmacology</subject><subject>cell aggregates</subject><subject>Cell Aggregation</subject><subject>Cell Aggregation - drug effects</subject><subject>cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Survival</subject><subject>Cell Survival - drug effects</subject><subject>cell suspension culture</subject><subject>cell viability</subject><subject>Cell-Derived Microparticles</subject><subject>Cell-Derived Microparticles - metabolism</subject><subject>Cell-Derived Microparticles - ultrastructure</subject><subject>Cells, Cultured</subject><subject>cellular microenvironment</subject><subject>cytology</subject><subject>Dentistry</subject><subject>Differentiation</subject><subject>drug effects</subject><subject>encapsulation</subject><subject>extracellular matrix</subject><subject>gelatin</subject><subject>gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation - drug effects</subject><subject>genes</subject><subject>hydrocolloids</subject><subject>medicine</subject><subject>metabolism</subject><subject>Mice</subject><subject>Microparticles</subject><subject>pharmacology</subject><subject>Phenotype</subject><subject>Pluripotent Stem Cells</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - drug effects</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>protein synthesis</subject><subject>Spheroids</subject><subject>Spheroids, Cellular</subject><subject>Spheroids, Cellular - metabolism</subject><subject>stem cells</subject><subject>tissue engineering</subject><subject>tissue repair</subject><subject>ultrastructure</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRCILoW_ABEXuGTxOLHjcKiEylelShxKz5bjjBcvSRxsp1L_PQ5bqoUDwhfb8948z_gNIS-BboGCeLPfds6POmFweohbRjNA5RagekA2IBtZ8pbyh2RDoWZlK4CdkCcx7mm-05o9JieMSlGDqDfEXUzGh9kHnZyfCm-LY-3CTcW4DMkZHIZl0KHQu13AXcZjMfo-h9bTPCzBzT7hlIqYcCxWetE7azHkmPul_ZQ8slkSn93tp-T644ev55_Lyy-fLs7fXZZGtCKVFirWYMubuutoC7aru4rxzlhWo-ESmGQVrxloLqzInfcGmW5RcKPBVlpWp-TsoDsv3YgZnlLQg5qDG3W4VV479ScyuW9q528Ua2XDGWSBV3cCwf9YMCY1urh2pCf0S1SSc9ECq9anXv-TCUJUuca6EZn69kA1wccY0N4XBFStrqq9Ov55tbqqqFTZ1Zz8_Lil-9TfNmbCiwPBaq_0Lriorq-yAqd5CSaazHh_YGD--huHQUXjcDLYu4Amqd67_6vk7C8ZM7jJGT18x1uMe7-Eac0BFZmi6mqdwHUAIc8ecJDVT3C13B4</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bratt-Leal, Andrés M</creator><creator>Carpenedo, Richard L</creator><creator>Ungrin, Mark D</creator><creator>Zandstra, Peter W</creator><creator>McDevitt, Todd C</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation</title><author>Bratt-Leal, Andrés M ; Carpenedo, Richard L ; Ungrin, Mark D ; Zandstra, Peter W ; McDevitt, Todd C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-f1327e9574bb091fb4b325bcf24ec58128235421a56f6010dce2a9e65ca1f3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adhesion</topic><topic>Advanced Basic Science</topic><topic>agarose</topic><topic>Aggregates</topic><topic>Animals</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - pharmacology</topic><topic>cell aggregates</topic><topic>Cell Aggregation</topic><topic>Cell Aggregation - drug effects</topic><topic>cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Survival</topic><topic>Cell Survival - drug effects</topic><topic>cell suspension culture</topic><topic>cell viability</topic><topic>Cell-Derived Microparticles</topic><topic>Cell-Derived Microparticles - metabolism</topic><topic>Cell-Derived Microparticles - ultrastructure</topic><topic>Cells, Cultured</topic><topic>cellular microenvironment</topic><topic>cytology</topic><topic>Dentistry</topic><topic>Differentiation</topic><topic>drug effects</topic><topic>encapsulation</topic><topic>extracellular matrix</topic><topic>gelatin</topic><topic>gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation - drug effects</topic><topic>genes</topic><topic>hydrocolloids</topic><topic>medicine</topic><topic>metabolism</topic><topic>Mice</topic><topic>Microparticles</topic><topic>pharmacology</topic><topic>Phenotype</topic><topic>Pluripotent Stem Cells</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - drug effects</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>protein synthesis</topic><topic>Spheroids</topic><topic>Spheroids, Cellular</topic><topic>Spheroids, Cellular - metabolism</topic><topic>stem cells</topic><topic>tissue engineering</topic><topic>tissue repair</topic><topic>ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratt-Leal, Andrés M</creatorcontrib><creatorcontrib>Carpenedo, Richard L</creatorcontrib><creatorcontrib>Ungrin, Mark D</creatorcontrib><creatorcontrib>Zandstra, Peter W</creatorcontrib><creatorcontrib>McDevitt, Todd C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratt-Leal, Andrés M</au><au>Carpenedo, Richard L</au><au>Ungrin, Mark D</au><au>Zandstra, Peter W</au><au>McDevitt, Todd C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>1</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell–biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell–biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20864164</pmid><doi>10.1016/j.biomaterials.2010.08.113</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-01, Vol.32 (1), p.48-56
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2987521
source MEDLINE; Elsevier ScienceDirect Journals
subjects adhesion
Advanced Basic Science
agarose
Aggregates
Animals
biocompatible materials
Biocompatible Materials - pharmacology
cell aggregates
Cell Aggregation
Cell Aggregation - drug effects
cell differentiation
Cell Differentiation - drug effects
Cell Survival
Cell Survival - drug effects
cell suspension culture
cell viability
Cell-Derived Microparticles
Cell-Derived Microparticles - metabolism
Cell-Derived Microparticles - ultrastructure
Cells, Cultured
cellular microenvironment
cytology
Dentistry
Differentiation
drug effects
encapsulation
extracellular matrix
gelatin
gene expression
Gene Expression Regulation
Gene Expression Regulation - drug effects
genes
hydrocolloids
medicine
metabolism
Mice
Microparticles
pharmacology
Phenotype
Pluripotent Stem Cells
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - drug effects
Pluripotent Stem Cells - metabolism
protein synthesis
Spheroids
Spheroids, Cellular
Spheroids, Cellular - metabolism
stem cells
tissue engineering
tissue repair
ultrastructure
title Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20biomaterials%20in%20multicellular%20aggregates%20modulates%20pluripotent%20stem%20cell%20differentiation&rft.jtitle=Biomaterials&rft.au=Bratt-Leal,%20Andr%C3%A9s%20M&rft.date=2011-01-01&rft.volume=32&rft.issue=1&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.08.113&rft_dat=%3Cproquest_pubme%3E1663601476%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663601476&rft_id=info:pmid/20864164&rft_els_id=1_s2_0_S0142961210011518&rfr_iscdi=true