Internal Dynamics of Lactose Permease
The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation proces...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (24), p.9827-9831 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9831 |
---|---|
container_issue | 24 |
container_start_page | 9827 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 86 |
creator | Dornmair, Klaus Jähnig, Fritz |
description | The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions. |
doi_str_mv | 10.1073/pnas.86.24.9827 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_298595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>34749</jstor_id><sourcerecordid>34749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e4ddaa41673f8de09585606d4caa9050e37063b194b35aec07a71ea19d749cd3</originalsourceid><addsrcrecordid>eNqFkTtvE0EUhUcIFBxDjYQEchFCtc6d90xBgUICkSxBkX50PXsXNtqHmVlH5N-zKy8WaaC6xfnOfR3GXnFYc7DyYtdhXjuzFmrtnbBP2IKD54VRHp6yBYCwhVNCPWenOd8BgNcOTtiJMB7A6gV7d9MNlDpsVp8eOmzrmFd9tdpgHPpMq2-UWsJML9izCptML-e6ZLfXV7eXX4rN1883lx83RdSCDwWpskRU3FhZuZKmYdqAKVVE9KCBpAUjt9yrrdRIESxaTsh9aZWPpVyyD4e2u_22pTJSNyRswi7VLaaH0GMdHitd_SN87--D8E57PfrPZ3_qf-4pD6Gtc6SmwY76fQ7WKxBKqf-CXCvr5HjGkl0cwJj6nBNVx2U4hCmAMAUQnAlChSmA0fHm7xuO_PzxUT-bdcwRmyphF-t8xIx1TioxYm9nbOr_R3005_0_gVDtm2agX8NIvj6Qd3no0xGVany6_A1WnK7h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15478367</pqid></control><display><type>article</type><title>Internal Dynamics of Lactose Permease</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dornmair, Klaus ; Jähnig, Fritz</creator><creatorcontrib>Dornmair, Klaus ; Jähnig, Fritz</creatorcontrib><description>The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.24.9827</identifier><identifier>PMID: 2690075</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Anisotropy ; Biological and medical sciences ; Cell Membrane - enzymology ; Conformational dynamics in molecular biology ; Dimyristoylphosphatidylcholine ; Ellipsoids ; Escherichia coli - enzymology ; Escherichia coli Proteins ; Fluorescence ; Fluorescence Polarization ; Fluorescent Dyes ; Fundamental and applied biological sciences. Psychology ; Lipids ; Liposomes ; Maleimides ; Membrane proteins ; Membrane transport proteins ; Membrane Transport Proteins - metabolism ; membrane vesicles ; Molecular biophysics ; Monosaccharide Transport Proteins ; Protein Conformation ; Relaxation time ; Rotation ; Symporters ; Temperature dependence ; Thermodynamics ; Time windows ; Tryptophan</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9827-9831</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e4ddaa41673f8de09585606d4caa9050e37063b194b35aec07a71ea19d749cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/34749$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/34749$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6788342$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2690075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dornmair, Klaus</creatorcontrib><creatorcontrib>Jähnig, Fritz</creatorcontrib><title>Internal Dynamics of Lactose Permease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.</description><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - enzymology</subject><subject>Conformational dynamics in molecular biology</subject><subject>Dimyristoylphosphatidylcholine</subject><subject>Ellipsoids</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins</subject><subject>Fluorescence</subject><subject>Fluorescence Polarization</subject><subject>Fluorescent Dyes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Maleimides</subject><subject>Membrane proteins</subject><subject>Membrane transport proteins</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>membrane vesicles</subject><subject>Molecular biophysics</subject><subject>Monosaccharide Transport Proteins</subject><subject>Protein Conformation</subject><subject>Relaxation time</subject><subject>Rotation</subject><subject>Symporters</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><subject>Time windows</subject><subject>Tryptophan</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvE0EUhUcIFBxDjYQEchFCtc6d90xBgUICkSxBkX50PXsXNtqHmVlH5N-zKy8WaaC6xfnOfR3GXnFYc7DyYtdhXjuzFmrtnbBP2IKD54VRHp6yBYCwhVNCPWenOd8BgNcOTtiJMB7A6gV7d9MNlDpsVp8eOmzrmFd9tdpgHPpMq2-UWsJML9izCptML-e6ZLfXV7eXX4rN1883lx83RdSCDwWpskRU3FhZuZKmYdqAKVVE9KCBpAUjt9yrrdRIESxaTsh9aZWPpVyyD4e2u_22pTJSNyRswi7VLaaH0GMdHitd_SN87--D8E57PfrPZ3_qf-4pD6Gtc6SmwY76fQ7WKxBKqf-CXCvr5HjGkl0cwJj6nBNVx2U4hCmAMAUQnAlChSmA0fHm7xuO_PzxUT-bdcwRmyphF-t8xIx1TioxYm9nbOr_R3005_0_gVDtm2agX8NIvj6Qd3no0xGVany6_A1WnK7h</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Dornmair, Klaus</creator><creator>Jähnig, Fritz</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19891201</creationdate><title>Internal Dynamics of Lactose Permease</title><author>Dornmair, Klaus ; Jähnig, Fritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e4ddaa41673f8de09585606d4caa9050e37063b194b35aec07a71ea19d749cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - enzymology</topic><topic>Conformational dynamics in molecular biology</topic><topic>Dimyristoylphosphatidylcholine</topic><topic>Ellipsoids</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins</topic><topic>Fluorescence</topic><topic>Fluorescence Polarization</topic><topic>Fluorescent Dyes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Maleimides</topic><topic>Membrane proteins</topic><topic>Membrane transport proteins</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>membrane vesicles</topic><topic>Molecular biophysics</topic><topic>Monosaccharide Transport Proteins</topic><topic>Protein Conformation</topic><topic>Relaxation time</topic><topic>Rotation</topic><topic>Symporters</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><topic>Time windows</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dornmair, Klaus</creatorcontrib><creatorcontrib>Jähnig, Fritz</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dornmair, Klaus</au><au>Jähnig, Fritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Dynamics of Lactose Permease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-12-01</date><risdate>1989</risdate><volume>86</volume><issue>24</issue><spage>9827</spage><epage>9831</epage><pages>9827-9831</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2690075</pmid><doi>10.1073/pnas.86.24.9827</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9827-9831 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_298595 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anisotropy Biological and medical sciences Cell Membrane - enzymology Conformational dynamics in molecular biology Dimyristoylphosphatidylcholine Ellipsoids Escherichia coli - enzymology Escherichia coli Proteins Fluorescence Fluorescence Polarization Fluorescent Dyes Fundamental and applied biological sciences. Psychology Lipids Liposomes Maleimides Membrane proteins Membrane transport proteins Membrane Transport Proteins - metabolism membrane vesicles Molecular biophysics Monosaccharide Transport Proteins Protein Conformation Relaxation time Rotation Symporters Temperature dependence Thermodynamics Time windows Tryptophan |
title | Internal Dynamics of Lactose Permease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Dynamics%20of%20Lactose%20Permease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dornmair,%20Klaus&rft.date=1989-12-01&rft.volume=86&rft.issue=24&rft.spage=9827&rft.epage=9831&rft.pages=9827-9831&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.24.9827&rft_dat=%3Cjstor_pubme%3E34749%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15478367&rft_id=info:pmid/2690075&rft_jstor_id=34749&rfr_iscdi=true |