Internal Dynamics of Lactose Permease

The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (24), p.9827-9831
Hauptverfasser: Dornmair, Klaus, Jähnig, Fritz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9831
container_issue 24
container_start_page 9827
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Dornmair, Klaus
Jähnig, Fritz
description The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.
doi_str_mv 10.1073/pnas.86.24.9827
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_298595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>34749</jstor_id><sourcerecordid>34749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e4ddaa41673f8de09585606d4caa9050e37063b194b35aec07a71ea19d749cd3</originalsourceid><addsrcrecordid>eNqFkTtvE0EUhUcIFBxDjYQEchFCtc6d90xBgUICkSxBkX50PXsXNtqHmVlH5N-zKy8WaaC6xfnOfR3GXnFYc7DyYtdhXjuzFmrtnbBP2IKD54VRHp6yBYCwhVNCPWenOd8BgNcOTtiJMB7A6gV7d9MNlDpsVp8eOmzrmFd9tdpgHPpMq2-UWsJML9izCptML-e6ZLfXV7eXX4rN1883lx83RdSCDwWpskRU3FhZuZKmYdqAKVVE9KCBpAUjt9yrrdRIESxaTsh9aZWPpVyyD4e2u_22pTJSNyRswi7VLaaH0GMdHitd_SN87--D8E57PfrPZ3_qf-4pD6Gtc6SmwY76fQ7WKxBKqf-CXCvr5HjGkl0cwJj6nBNVx2U4hCmAMAUQnAlChSmA0fHm7xuO_PzxUT-bdcwRmyphF-t8xIx1TioxYm9nbOr_R3005_0_gVDtm2agX8NIvj6Qd3no0xGVany6_A1WnK7h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15478367</pqid></control><display><type>article</type><title>Internal Dynamics of Lactose Permease</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dornmair, Klaus ; Jähnig, Fritz</creator><creatorcontrib>Dornmair, Klaus ; Jähnig, Fritz</creatorcontrib><description>The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.24.9827</identifier><identifier>PMID: 2690075</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Anisotropy ; Biological and medical sciences ; Cell Membrane - enzymology ; Conformational dynamics in molecular biology ; Dimyristoylphosphatidylcholine ; Ellipsoids ; Escherichia coli - enzymology ; Escherichia coli Proteins ; Fluorescence ; Fluorescence Polarization ; Fluorescent Dyes ; Fundamental and applied biological sciences. Psychology ; Lipids ; Liposomes ; Maleimides ; Membrane proteins ; Membrane transport proteins ; Membrane Transport Proteins - metabolism ; membrane vesicles ; Molecular biophysics ; Monosaccharide Transport Proteins ; Protein Conformation ; Relaxation time ; Rotation ; Symporters ; Temperature dependence ; Thermodynamics ; Time windows ; Tryptophan</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9827-9831</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e4ddaa41673f8de09585606d4caa9050e37063b194b35aec07a71ea19d749cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/34749$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/34749$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6788342$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2690075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dornmair, Klaus</creatorcontrib><creatorcontrib>Jähnig, Fritz</creatorcontrib><title>Internal Dynamics of Lactose Permease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.</description><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - enzymology</subject><subject>Conformational dynamics in molecular biology</subject><subject>Dimyristoylphosphatidylcholine</subject><subject>Ellipsoids</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins</subject><subject>Fluorescence</subject><subject>Fluorescence Polarization</subject><subject>Fluorescent Dyes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Maleimides</subject><subject>Membrane proteins</subject><subject>Membrane transport proteins</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>membrane vesicles</subject><subject>Molecular biophysics</subject><subject>Monosaccharide Transport Proteins</subject><subject>Protein Conformation</subject><subject>Relaxation time</subject><subject>Rotation</subject><subject>Symporters</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><subject>Time windows</subject><subject>Tryptophan</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvE0EUhUcIFBxDjYQEchFCtc6d90xBgUICkSxBkX50PXsXNtqHmVlH5N-zKy8WaaC6xfnOfR3GXnFYc7DyYtdhXjuzFmrtnbBP2IKD54VRHp6yBYCwhVNCPWenOd8BgNcOTtiJMB7A6gV7d9MNlDpsVp8eOmzrmFd9tdpgHPpMq2-UWsJML9izCptML-e6ZLfXV7eXX4rN1883lx83RdSCDwWpskRU3FhZuZKmYdqAKVVE9KCBpAUjt9yrrdRIESxaTsh9aZWPpVyyD4e2u_22pTJSNyRswi7VLaaH0GMdHitd_SN87--D8E57PfrPZ3_qf-4pD6Gtc6SmwY76fQ7WKxBKqf-CXCvr5HjGkl0cwJj6nBNVx2U4hCmAMAUQnAlChSmA0fHm7xuO_PzxUT-bdcwRmyphF-t8xIx1TioxYm9nbOr_R3005_0_gVDtm2agX8NIvj6Qd3no0xGVany6_A1WnK7h</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Dornmair, Klaus</creator><creator>Jähnig, Fritz</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19891201</creationdate><title>Internal Dynamics of Lactose Permease</title><author>Dornmair, Klaus ; Jähnig, Fritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e4ddaa41673f8de09585606d4caa9050e37063b194b35aec07a71ea19d749cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - enzymology</topic><topic>Conformational dynamics in molecular biology</topic><topic>Dimyristoylphosphatidylcholine</topic><topic>Ellipsoids</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins</topic><topic>Fluorescence</topic><topic>Fluorescence Polarization</topic><topic>Fluorescent Dyes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Maleimides</topic><topic>Membrane proteins</topic><topic>Membrane transport proteins</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>membrane vesicles</topic><topic>Molecular biophysics</topic><topic>Monosaccharide Transport Proteins</topic><topic>Protein Conformation</topic><topic>Relaxation time</topic><topic>Rotation</topic><topic>Symporters</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><topic>Time windows</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dornmair, Klaus</creatorcontrib><creatorcontrib>Jähnig, Fritz</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dornmair, Klaus</au><au>Jähnig, Fritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Dynamics of Lactose Permease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-12-01</date><risdate>1989</risdate><volume>86</volume><issue>24</issue><spage>9827</spage><epage>9831</epage><pages>9827-9831</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The transport protein lactose permease was reconstituted in vesicles of dimyristoylphosphatidylcholine, and the internal dynamics were studied by measuring the fluorescence anisotropy decay of the tryptophan residues and of a covalently bound pyrene label. For the tryptophans three relaxation processes and for the pyrene two relaxation processes with relaxation times in the nanosecond range were observed. The slowest process, of ≈ 50 ns, is assigned to orientational fluctuations of membrane-spanning helices. When the temperature is decreased below the lipid-phase transition, this relaxation process is slowed down and restricted in amplitude. Because the transport rate is known to also decrease below the phase transition, this observation suggests a coupling between internal dynamics and transport. This coupling is analyzed on the basis of the Kramers relation for chemical reactions.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2690075</pmid><doi>10.1073/pnas.86.24.9827</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9827-9831
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_298595
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anisotropy
Biological and medical sciences
Cell Membrane - enzymology
Conformational dynamics in molecular biology
Dimyristoylphosphatidylcholine
Ellipsoids
Escherichia coli - enzymology
Escherichia coli Proteins
Fluorescence
Fluorescence Polarization
Fluorescent Dyes
Fundamental and applied biological sciences. Psychology
Lipids
Liposomes
Maleimides
Membrane proteins
Membrane transport proteins
Membrane Transport Proteins - metabolism
membrane vesicles
Molecular biophysics
Monosaccharide Transport Proteins
Protein Conformation
Relaxation time
Rotation
Symporters
Temperature dependence
Thermodynamics
Time windows
Tryptophan
title Internal Dynamics of Lactose Permease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Dynamics%20of%20Lactose%20Permease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dornmair,%20Klaus&rft.date=1989-12-01&rft.volume=86&rft.issue=24&rft.spage=9827&rft.epage=9831&rft.pages=9827-9831&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.24.9827&rft_dat=%3Cjstor_pubme%3E34749%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15478367&rft_id=info:pmid/2690075&rft_jstor_id=34749&rfr_iscdi=true