A Mechanism for the Hebb and the Anti-Hebb Processes Underlying Learning and Memory

In a previous paper, a model was presented showing how the group of Ca2+/calmodulin-dependent protein kinase II molecules contained within a postsynaptic density could stably store a graded synaptic weight. This paper completes the model by showing how bidirectional control of synaptic weight could...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (23), p.9574-9578
1. Verfasser: Lisman, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9578
container_issue 23
container_start_page 9574
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Lisman, John
description In a previous paper, a model was presented showing how the group of Ca2+/calmodulin-dependent protein kinase II molecules contained within a postsynaptic density could stably store a graded synaptic weight. This paper completes the model by showing how bidirectional control of synaptic weight could be achieved. It is proposed that the quantitative level of the activity-dependent rise in postsynaptic Ca2+ determines whether the synaptic weight will increase or decrease. It is further proposed that reduction of synaptic weight is governed by protein phosphatase 1, an enzyme indirectly controlled by Ca2+ through reactions involving phosphatase inhibitor 1, cAMP-dependent protein kinase, calcineurin, and adenylate cyclase. Modeling of this biochemical system shows that it can function as an analog computer that can store a synaptic weight and modify it in accord with the Hebb and anti-Hebb learning rules.
doi_str_mv 10.1073/pnas.86.23.9574
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_298540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>35126</jstor_id><sourcerecordid>35126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-53e0c458ccc431627c80e781082c11b64a4d7fb63cc925c665335c0316d269dc3</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4Moda2eBUGZg-hptvmdzMHDUrQtbFHQnkPmTaY7ZSZZk1lx_3sz3eliL4VA8vL9fN835CH0luAlwYqdbb1NSy2XlC0rofgztCC4IqXkFX6OFhhTVWpO-Uv0KqU7jHElND5BJ1QIqYheoJ-r4trBxvouDUUbYjFuXHHp6rqwvrkvVn7syvubHzGAS8ml4sY3Lvb7zt8Wa2ejnw4Tf-2GEPev0YvW9sm9mfdTdPPt66_zy3L9_eLqfLUuIaePpWAOAxcaADgjkirQ2ClNsKZASC255Y1qa8kAKipASsGYAJzRhsqqAXaKvhz6bnf14Bpwfoy2N9vYDTbuTbCdeaz4bmNuwx9DKy04zv5Psz-G3zuXRjN0CVzfW-_CLhlVMcWxZhk8O4AQQ0rRtccMgs00BjONwWhpKDPTGLLj_f9PO_Lzv2f946zbBLZvo_XQpSMmNaF5ZezDjE39H9RHOZ-fBEy76_vR_R0z-e5A3qUxxCPKBKGS_QO30LD0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79374083</pqid></control><display><type>article</type><title>A Mechanism for the Hebb and the Anti-Hebb Processes Underlying Learning and Memory</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lisman, John</creator><creatorcontrib>Lisman, John</creatorcontrib><description>In a previous paper, a model was presented showing how the group of Ca2+/calmodulin-dependent protein kinase II molecules contained within a postsynaptic density could stably store a graded synaptic weight. This paper completes the model by showing how bidirectional control of synaptic weight could be achieved. It is proposed that the quantitative level of the activity-dependent rise in postsynaptic Ca2+ determines whether the synaptic weight will increase or decrease. It is further proposed that reduction of synaptic weight is governed by protein phosphatase 1, an enzyme indirectly controlled by Ca2+ through reactions involving phosphatase inhibitor 1, cAMP-dependent protein kinase, calcineurin, and adenylate cyclase. Modeling of this biochemical system shows that it can function as an analog computer that can store a synaptic weight and modify it in accord with the Hebb and anti-Hebb learning rules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.23.9574</identifier><identifier>PMID: 2556718</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Adenylyl Cyclases - metabolism ; Behavioral psychophysiology ; Biochemistry ; Biological and medical sciences ; Brain - metabolism ; Brain - physiology ; Calcineurin ; Calcium - physiology ; Calcium-Calmodulin-Dependent Protein Kinases ; Calmodulin-Binding Proteins - metabolism ; Cyclic AMP - metabolism ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Hippocampus ; Homeostasis ; Humans ; Kinetics ; Lead ; Learning ; Long term potentiation ; Memory ; Models, Neurological ; Models, Psychological ; Molecules ; Phosphatases ; Phosphoprotein Phosphatases - metabolism ; Phosphorylation ; Protein Kinases - metabolism ; Protein Phosphatase 1 ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Synapses ; Synapses - metabolism ; Synapses - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (23), p.9574-9578</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-53e0c458ccc431627c80e781082c11b64a4d7fb63cc925c665335c0316d269dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/35126$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/35126$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6812812$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2556718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lisman, John</creatorcontrib><title>A Mechanism for the Hebb and the Anti-Hebb Processes Underlying Learning and Memory</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In a previous paper, a model was presented showing how the group of Ca2+/calmodulin-dependent protein kinase II molecules contained within a postsynaptic density could stably store a graded synaptic weight. This paper completes the model by showing how bidirectional control of synaptic weight could be achieved. It is proposed that the quantitative level of the activity-dependent rise in postsynaptic Ca2+ determines whether the synaptic weight will increase or decrease. It is further proposed that reduction of synaptic weight is governed by protein phosphatase 1, an enzyme indirectly controlled by Ca2+ through reactions involving phosphatase inhibitor 1, cAMP-dependent protein kinase, calcineurin, and adenylate cyclase. Modeling of this biochemical system shows that it can function as an analog computer that can store a synaptic weight and modify it in accord with the Hebb and anti-Hebb learning rules.</description><subject>Adenylyl Cyclases - metabolism</subject><subject>Behavioral psychophysiology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Calcineurin</subject><subject>Calcium - physiology</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases</subject><subject>Calmodulin-Binding Proteins - metabolism</subject><subject>Cyclic AMP - metabolism</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lead</subject><subject>Learning</subject><subject>Long term potentiation</subject><subject>Memory</subject><subject>Models, Neurological</subject><subject>Models, Psychological</subject><subject>Molecules</subject><subject>Phosphatases</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Phosphatase 1</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9rFDEUx4Moda2eBUGZg-hptvmdzMHDUrQtbFHQnkPmTaY7ZSZZk1lx_3sz3eliL4VA8vL9fN835CH0luAlwYqdbb1NSy2XlC0rofgztCC4IqXkFX6OFhhTVWpO-Uv0KqU7jHElND5BJ1QIqYheoJ-r4trBxvouDUUbYjFuXHHp6rqwvrkvVn7syvubHzGAS8ml4sY3Lvb7zt8Wa2ejnw4Tf-2GEPev0YvW9sm9mfdTdPPt66_zy3L9_eLqfLUuIaePpWAOAxcaADgjkirQ2ClNsKZASC255Y1qa8kAKipASsGYAJzRhsqqAXaKvhz6bnf14Bpwfoy2N9vYDTbuTbCdeaz4bmNuwx9DKy04zv5Psz-G3zuXRjN0CVzfW-_CLhlVMcWxZhk8O4AQQ0rRtccMgs00BjONwWhpKDPTGLLj_f9PO_Lzv2f946zbBLZvo_XQpSMmNaF5ZezDjE39H9RHOZ-fBEy76_vR_R0z-e5A3qUxxCPKBKGS_QO30LD0</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Lisman, John</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19891201</creationdate><title>A Mechanism for the Hebb and the Anti-Hebb Processes Underlying Learning and Memory</title><author>Lisman, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-53e0c458ccc431627c80e781082c11b64a4d7fb63cc925c665335c0316d269dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Adenylyl Cyclases - metabolism</topic><topic>Behavioral psychophysiology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Calcineurin</topic><topic>Calcium - physiology</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases</topic><topic>Calmodulin-Binding Proteins - metabolism</topic><topic>Cyclic AMP - metabolism</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lead</topic><topic>Learning</topic><topic>Long term potentiation</topic><topic>Memory</topic><topic>Models, Neurological</topic><topic>Models, Psychological</topic><topic>Molecules</topic><topic>Phosphatases</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Phosphatase 1</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisman, John</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisman, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanism for the Hebb and the Anti-Hebb Processes Underlying Learning and Memory</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-12-01</date><risdate>1989</risdate><volume>86</volume><issue>23</issue><spage>9574</spage><epage>9578</epage><pages>9574-9578</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>In a previous paper, a model was presented showing how the group of Ca2+/calmodulin-dependent protein kinase II molecules contained within a postsynaptic density could stably store a graded synaptic weight. This paper completes the model by showing how bidirectional control of synaptic weight could be achieved. It is proposed that the quantitative level of the activity-dependent rise in postsynaptic Ca2+ determines whether the synaptic weight will increase or decrease. It is further proposed that reduction of synaptic weight is governed by protein phosphatase 1, an enzyme indirectly controlled by Ca2+ through reactions involving phosphatase inhibitor 1, cAMP-dependent protein kinase, calcineurin, and adenylate cyclase. Modeling of this biochemical system shows that it can function as an analog computer that can store a synaptic weight and modify it in accord with the Hebb and anti-Hebb learning rules.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2556718</pmid><doi>10.1073/pnas.86.23.9574</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (23), p.9574-9578
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_298540
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenylyl Cyclases - metabolism
Behavioral psychophysiology
Biochemistry
Biological and medical sciences
Brain - metabolism
Brain - physiology
Calcineurin
Calcium - physiology
Calcium-Calmodulin-Dependent Protein Kinases
Calmodulin-Binding Proteins - metabolism
Cyclic AMP - metabolism
Enzymes
Fundamental and applied biological sciences. Psychology
Hippocampus
Homeostasis
Humans
Kinetics
Lead
Learning
Long term potentiation
Memory
Models, Neurological
Models, Psychological
Molecules
Phosphatases
Phosphoprotein Phosphatases - metabolism
Phosphorylation
Protein Kinases - metabolism
Protein Phosphatase 1
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Synapses
Synapses - metabolism
Synapses - physiology
title A Mechanism for the Hebb and the Anti-Hebb Processes Underlying Learning and Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanism%20for%20the%20Hebb%20and%20the%20Anti-Hebb%20Processes%20Underlying%20Learning%20and%20Memory&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lisman,%20John&rft.date=1989-12-01&rft.volume=86&rft.issue=23&rft.spage=9574&rft.epage=9578&rft.pages=9574-9578&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.23.9574&rft_dat=%3Cjstor_pubme%3E35126%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79374083&rft_id=info:pmid/2556718&rft_jstor_id=35126&rfr_iscdi=true