Metabolic Control of Vesicular Glutamate Transport and Release

Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2010-10, Vol.68 (1), p.99-112
Hauptverfasser: Juge, Narinobu, Gray, John A., Omote, Hiroshi, Miyaji, Takaaki, Inoue, Tsuyoshi, Hara, Chiaki, Uneyama, Hisayuki, Edwards, Robert H., Nicoll, Roger A., Moriyama, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 99
container_title Neuron (Cambridge, Mass.)
container_volume 68
creator Juge, Narinobu
Gray, John A.
Omote, Hiroshi
Miyaji, Takaaki
Inoue, Tsuyoshi
Hara, Chiaki
Uneyama, Hisayuki
Edwards, Robert H.
Nicoll, Roger A.
Moriyama, Yoshinori
description Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl −. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl − acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl − at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. ► Cl − acts as an allosteric activator of VGLUTs ► Ketone bodies inhibited vesicular glutamate uptake by competing with Cl − ► Acetoacetate reduced quantal size at hippocampal synapses ► Acetoacetate suppressed 4AP-evoked glutamate release and seizures
doi_str_mv 10.1016/j.neuron.2010.09.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2978156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627310007191</els_id><sourcerecordid>3235624281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-35592eef666fddf3a7485a8d848ebe82de2b9b47e4f3295a37b40ee7300405743</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYNY7LX6DUQWfPBpbyfZ_H0pyKW2QktBqq8hm53VXHI312S34Lc35dZWffApMDlzZs78CHlDYU2BytPtesIlp2nNoJbArAHYM7KiYFTLqTHPyQq0ka1kqjsmL0vZAlAuDH1BjhkYBsrwFTm7xtn1KQbfbNI05xSbNDZfsQS_RJebi7jMbudmbG6zm8o-5blx09B8xoiu4CtyNLpY8PXDe0K-fDy_3Vy2VzcXnzYfrlovtJ7bTgjDEEcp5TgMY-cU18LpQXONPWo2IOtNzxXysWNGuE71HBBVB8BBKN6dkLOD737pdzh4rKu6aPc57Fz-aZML9u-fKXy339KdZUZpKmQ1eP9gkNOPBctsd6F4jNFNmJZitVSKG81FVb77R7lNS55qOksFdJpzkLqq-EHlcyol4_i4CwV7z8du7YGPvedjwdjKp7a9_TPHY9NvIE9BsV7zLmC2xQecPA4ho5_tkML_J_wCCK6jfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503844068</pqid></control><display><type>article</type><title>Metabolic Control of Vesicular Glutamate Transport and Release</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Juge, Narinobu ; Gray, John A. ; Omote, Hiroshi ; Miyaji, Takaaki ; Inoue, Tsuyoshi ; Hara, Chiaki ; Uneyama, Hisayuki ; Edwards, Robert H. ; Nicoll, Roger A. ; Moriyama, Yoshinori</creator><creatorcontrib>Juge, Narinobu ; Gray, John A. ; Omote, Hiroshi ; Miyaji, Takaaki ; Inoue, Tsuyoshi ; Hara, Chiaki ; Uneyama, Hisayuki ; Edwards, Robert H. ; Nicoll, Roger A. ; Moriyama, Yoshinori</creatorcontrib><description>Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl −. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl − acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl − at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. ► Cl − acts as an allosteric activator of VGLUTs ► Ketone bodies inhibited vesicular glutamate uptake by competing with Cl − ► Acetoacetate reduced quantal size at hippocampal synapses ► Acetoacetate suppressed 4AP-evoked glutamate release and seizures</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2010.09.002</identifier><identifier>PMID: 20920794</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>4-Aminopyridine - pharmacology ; Acetoacetates - pharmacology ; Animals ; Astrocytes - drug effects ; Astrocytes - physiology ; Behavior ; Behavior, Animal ; Brain research ; Cells, Cultured ; Chlorides - metabolism ; Chromatography, High Pressure Liquid - methods ; Disease Models, Animal ; Dopamine - metabolism ; Dose-Response Relationship, Drug ; Embryo, Mammalian ; Epilepsy ; Excitatory Postsynaptic Potentials - drug effects ; Exocytosis - drug effects ; Exocytosis - genetics ; Gene Expression Regulation ; Glutamic Acid - metabolism ; Hippocampus - cytology ; Humans ; In Vitro Techniques ; Ketone Bodies ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - genetics ; Metabolites ; Mice ; Mice, Inbred C57BL ; Microdialysis - methods ; Models, Biological ; Neurons - drug effects ; Neurons - metabolism ; Patch-Clamp Techniques - methods ; Potassium Channel Blockers - pharmacology ; Rats ; Rodents ; Seizures - chemically induced ; Seizures - physiopathology ; Studies ; Synaptic Vesicles - metabolism ; Vesicular Glutamate Transport Protein 2 - chemistry ; Vesicular Glutamate Transport Protein 2 - genetics ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2010-10, Vol.68 (1), p.99-112</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 6, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-35592eef666fddf3a7485a8d848ebe82de2b9b47e4f3295a37b40ee7300405743</citedby><cites>FETCH-LOGICAL-c588t-35592eef666fddf3a7485a8d848ebe82de2b9b47e4f3295a37b40ee7300405743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627310007191$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20920794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Juge, Narinobu</creatorcontrib><creatorcontrib>Gray, John A.</creatorcontrib><creatorcontrib>Omote, Hiroshi</creatorcontrib><creatorcontrib>Miyaji, Takaaki</creatorcontrib><creatorcontrib>Inoue, Tsuyoshi</creatorcontrib><creatorcontrib>Hara, Chiaki</creatorcontrib><creatorcontrib>Uneyama, Hisayuki</creatorcontrib><creatorcontrib>Edwards, Robert H.</creatorcontrib><creatorcontrib>Nicoll, Roger A.</creatorcontrib><creatorcontrib>Moriyama, Yoshinori</creatorcontrib><title>Metabolic Control of Vesicular Glutamate Transport and Release</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl −. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl − acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl − at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. ► Cl − acts as an allosteric activator of VGLUTs ► Ketone bodies inhibited vesicular glutamate uptake by competing with Cl − ► Acetoacetate reduced quantal size at hippocampal synapses ► Acetoacetate suppressed 4AP-evoked glutamate release and seizures</description><subject>4-Aminopyridine - pharmacology</subject><subject>Acetoacetates - pharmacology</subject><subject>Animals</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - physiology</subject><subject>Behavior</subject><subject>Behavior, Animal</subject><subject>Brain research</subject><subject>Cells, Cultured</subject><subject>Chlorides - metabolism</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Disease Models, Animal</subject><subject>Dopamine - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Embryo, Mammalian</subject><subject>Epilepsy</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Exocytosis - drug effects</subject><subject>Exocytosis - genetics</subject><subject>Gene Expression Regulation</subject><subject>Glutamic Acid - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Ketone Bodies</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microdialysis - methods</subject><subject>Models, Biological</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Rats</subject><subject>Rodents</subject><subject>Seizures - chemically induced</subject><subject>Seizures - physiopathology</subject><subject>Studies</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2 - chemistry</subject><subject>Vesicular Glutamate Transport Protein 2 - genetics</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFTEQxYNY7LX6DUQWfPBpbyfZ_H0pyKW2QktBqq8hm53VXHI312S34Lc35dZWffApMDlzZs78CHlDYU2BytPtesIlp2nNoJbArAHYM7KiYFTLqTHPyQq0ka1kqjsmL0vZAlAuDH1BjhkYBsrwFTm7xtn1KQbfbNI05xSbNDZfsQS_RJebi7jMbudmbG6zm8o-5blx09B8xoiu4CtyNLpY8PXDe0K-fDy_3Vy2VzcXnzYfrlovtJ7bTgjDEEcp5TgMY-cU18LpQXONPWo2IOtNzxXysWNGuE71HBBVB8BBKN6dkLOD737pdzh4rKu6aPc57Fz-aZML9u-fKXy339KdZUZpKmQ1eP9gkNOPBctsd6F4jNFNmJZitVSKG81FVb77R7lNS55qOksFdJpzkLqq-EHlcyol4_i4CwV7z8du7YGPvedjwdjKp7a9_TPHY9NvIE9BsV7zLmC2xQecPA4ho5_tkML_J_wCCK6jfw</recordid><startdate>20101006</startdate><enddate>20101006</enddate><creator>Juge, Narinobu</creator><creator>Gray, John A.</creator><creator>Omote, Hiroshi</creator><creator>Miyaji, Takaaki</creator><creator>Inoue, Tsuyoshi</creator><creator>Hara, Chiaki</creator><creator>Uneyama, Hisayuki</creator><creator>Edwards, Robert H.</creator><creator>Nicoll, Roger A.</creator><creator>Moriyama, Yoshinori</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20101006</creationdate><title>Metabolic Control of Vesicular Glutamate Transport and Release</title><author>Juge, Narinobu ; Gray, John A. ; Omote, Hiroshi ; Miyaji, Takaaki ; Inoue, Tsuyoshi ; Hara, Chiaki ; Uneyama, Hisayuki ; Edwards, Robert H. ; Nicoll, Roger A. ; Moriyama, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-35592eef666fddf3a7485a8d848ebe82de2b9b47e4f3295a37b40ee7300405743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>4-Aminopyridine - pharmacology</topic><topic>Acetoacetates - pharmacology</topic><topic>Animals</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - physiology</topic><topic>Behavior</topic><topic>Behavior, Animal</topic><topic>Brain research</topic><topic>Cells, Cultured</topic><topic>Chlorides - metabolism</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Disease Models, Animal</topic><topic>Dopamine - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Embryo, Mammalian</topic><topic>Epilepsy</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Exocytosis - drug effects</topic><topic>Exocytosis - genetics</topic><topic>Gene Expression Regulation</topic><topic>Glutamic Acid - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Ketone Bodies</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microdialysis - methods</topic><topic>Models, Biological</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Rats</topic><topic>Rodents</topic><topic>Seizures - chemically induced</topic><topic>Seizures - physiopathology</topic><topic>Studies</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2 - chemistry</topic><topic>Vesicular Glutamate Transport Protein 2 - genetics</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juge, Narinobu</creatorcontrib><creatorcontrib>Gray, John A.</creatorcontrib><creatorcontrib>Omote, Hiroshi</creatorcontrib><creatorcontrib>Miyaji, Takaaki</creatorcontrib><creatorcontrib>Inoue, Tsuyoshi</creatorcontrib><creatorcontrib>Hara, Chiaki</creatorcontrib><creatorcontrib>Uneyama, Hisayuki</creatorcontrib><creatorcontrib>Edwards, Robert H.</creatorcontrib><creatorcontrib>Nicoll, Roger A.</creatorcontrib><creatorcontrib>Moriyama, Yoshinori</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juge, Narinobu</au><au>Gray, John A.</au><au>Omote, Hiroshi</au><au>Miyaji, Takaaki</au><au>Inoue, Tsuyoshi</au><au>Hara, Chiaki</au><au>Uneyama, Hisayuki</au><au>Edwards, Robert H.</au><au>Nicoll, Roger A.</au><au>Moriyama, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Control of Vesicular Glutamate Transport and Release</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2010-10-06</date><risdate>2010</risdate><volume>68</volume><issue>1</issue><spage>99</spage><epage>112</epage><pages>99-112</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl −. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl − acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl − at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. ► Cl − acts as an allosteric activator of VGLUTs ► Ketone bodies inhibited vesicular glutamate uptake by competing with Cl − ► Acetoacetate reduced quantal size at hippocampal synapses ► Acetoacetate suppressed 4AP-evoked glutamate release and seizures</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20920794</pmid><doi>10.1016/j.neuron.2010.09.002</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2010-10, Vol.68 (1), p.99-112
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2978156
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 4-Aminopyridine - pharmacology
Acetoacetates - pharmacology
Animals
Astrocytes - drug effects
Astrocytes - physiology
Behavior
Behavior, Animal
Brain research
Cells, Cultured
Chlorides - metabolism
Chromatography, High Pressure Liquid - methods
Disease Models, Animal
Dopamine - metabolism
Dose-Response Relationship, Drug
Embryo, Mammalian
Epilepsy
Excitatory Postsynaptic Potentials - drug effects
Exocytosis - drug effects
Exocytosis - genetics
Gene Expression Regulation
Glutamic Acid - metabolism
Hippocampus - cytology
Humans
In Vitro Techniques
Ketone Bodies
Membrane Potential, Mitochondrial - drug effects
Membrane Potential, Mitochondrial - genetics
Metabolites
Mice
Mice, Inbred C57BL
Microdialysis - methods
Models, Biological
Neurons - drug effects
Neurons - metabolism
Patch-Clamp Techniques - methods
Potassium Channel Blockers - pharmacology
Rats
Rodents
Seizures - chemically induced
Seizures - physiopathology
Studies
Synaptic Vesicles - metabolism
Vesicular Glutamate Transport Protein 2 - chemistry
Vesicular Glutamate Transport Protein 2 - genetics
Vesicular Glutamate Transport Protein 2 - metabolism
title Metabolic Control of Vesicular Glutamate Transport and Release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Control%20of%20Vesicular%20Glutamate%20Transport%20and%20Release&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Juge,%20Narinobu&rft.date=2010-10-06&rft.volume=68&rft.issue=1&rft.spage=99&rft.epage=112&rft.pages=99-112&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2010.09.002&rft_dat=%3Cproquest_pubme%3E3235624281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503844068&rft_id=info:pmid/20920794&rft_els_id=S0896627310007191&rfr_iscdi=true