Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-10, Vol.285 (43), p.32937-32945
Hauptverfasser: Yu, Yang, Park, Ji-Won, Kwon, Hyun-Mi, Hwang, Hyun-Ok, Jang, In-Hwan, Masuda, Akiko, Kurokawa, Kenji, Nakayama, Hiroshi, Lee, Won-Jae, Dohmae, Naoshi, Zhang, Jinghai, Lee, Bok Luel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32945
container_issue 43
container_start_page 32937
container_title The Journal of biological chemistry
container_volume 285
creator Yu, Yang
Park, Ji-Won
Kwon, Hyun-Mi
Hwang, Hyun-Ok
Jang, In-Hwan
Masuda, Akiko
Kurokawa, Kenji
Nakayama, Hiroshi
Lee, Won-Jae
Dohmae, Naoshi
Zhang, Jinghai
Lee, Bok Luel
description In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects.
doi_str_mv 10.1074/jbc.M110.144014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2963372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820471753</els_id><sourcerecordid>879477919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-7d3803f9a69e1b32065031acb1add4b3535e159bf34fd0ab10a8e6b293dbb42b3</originalsourceid><addsrcrecordid>eNqNkjtvFDEUhUcIRJZATQfuqCbxax5ukELCY6VEREAkOsv23NncaMbe2LMrTZW_Hq82RFAgcOPXd8-1dU5RvGb0iNFGHt9Yd3TBdjspKZNPigWjrShFxX4-LRaUclYqXrUHxYuUbmgeUrHnxQGnDeWS1Yvi7gy3EBNOMwk9WXpvJiDLcdx4IN_AhZXHCYMnF-Cujcc0kj5E8sG4CSKagVyGYR7z0pERUijP0IzowxpHGPLZicOunOY1kEtYT9iF1TA74wn63CqBm9LL4llvhgSvHubD4urTxx-nX8rzr5-Xpyfnpasln8qmEy0VvTK1AmYFp3VFBTPOMtN10opKVMAqZXsh-44ay6hpobZcic5aya04LN7vddcbO0LnwE_RDHodcTRx1sGg_vPG47Veha3mqhai4Vng3YNADLcbSJMeMTkYBuMhbJJuGyWbRjH1H6RkGeT1P8mmUkxkd3fk8Z50MaQUoX98OaN6lwSdk6B3SdD7JOSKN79_-JH_ZX0G3u6B3gRtVhGTvvrOKROUtaqtKc2E2hOQjdkiRJ0cgnfQYcze6S7gX9vfAx28zkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759131106</pqid></control><display><type>article</type><title>Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yu, Yang ; Park, Ji-Won ; Kwon, Hyun-Mi ; Hwang, Hyun-Ok ; Jang, In-Hwan ; Masuda, Akiko ; Kurokawa, Kenji ; Nakayama, Hiroshi ; Lee, Won-Jae ; Dohmae, Naoshi ; Zhang, Jinghai ; Lee, Bok Luel</creator><creatorcontrib>Yu, Yang ; Park, Ji-Won ; Kwon, Hyun-Mi ; Hwang, Hyun-Ok ; Jang, In-Hwan ; Masuda, Akiko ; Kurokawa, Kenji ; Nakayama, Hiroshi ; Lee, Won-Jae ; Dohmae, Naoshi ; Zhang, Jinghai ; Lee, Bok Luel</creatorcontrib><description>In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.144014</identifier><identifier>PMID: 20702416</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amidase ; Animals ; Antimicrobial peptides ; b-1,3-Glucan ; Bacteria ; Bacteria - immunology ; Bacteria - metabolism ; Base Sequence ; beta -1,3-Glucan ; Biological diversity ; Carrier Proteins - genetics ; Carrier Proteins - immunology ; Carrier Proteins - metabolism ; Cell Wall ; Defensins - biosynthesis ; Defensins - genetics ; Defensins - immunology ; Diaminopimelic Acid ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - immunology ; Drosophila Proteins - metabolism ; Gram-negative bacteria ; Gram-positive bacilli ; Gram-positive bacteria ; Hemocytes ; Humoral Response ; Imd Pathway ; Immune response ; Immunity, Innate - physiology ; Immunology ; Infection ; Innate Immunity ; Insect ; Insect Proteins - genetics ; Insect Proteins - immunology ; Insect Proteins - metabolism ; Larvae ; Molecular Sequence Data ; Pattern Recognition Receptor ; Peptidoglycan ; Peptidoglycan - immunology ; Peptidoglycan - metabolism ; peptidoglycans ; PGRP ; Proteolysis ; Signal Transduction ; Species Specificity ; Tenebrio ; Tenebrio - genetics ; Tenebrio - immunology ; Tenebrio - metabolism ; Tenebrio - microbiology ; Tenebrio molitor ; Toll Receptors</subject><ispartof>The Journal of biological chemistry, 2010-10, Vol.285 (43), p.32937-32945</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-7d3803f9a69e1b32065031acb1add4b3535e159bf34fd0ab10a8e6b293dbb42b3</citedby><cites>FETCH-LOGICAL-c642t-7d3803f9a69e1b32065031acb1add4b3535e159bf34fd0ab10a8e6b293dbb42b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963372/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963372/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20702416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Park, Ji-Won</creatorcontrib><creatorcontrib>Kwon, Hyun-Mi</creatorcontrib><creatorcontrib>Hwang, Hyun-Ok</creatorcontrib><creatorcontrib>Jang, In-Hwan</creatorcontrib><creatorcontrib>Masuda, Akiko</creatorcontrib><creatorcontrib>Kurokawa, Kenji</creatorcontrib><creatorcontrib>Nakayama, Hiroshi</creatorcontrib><creatorcontrib>Lee, Won-Jae</creatorcontrib><creatorcontrib>Dohmae, Naoshi</creatorcontrib><creatorcontrib>Zhang, Jinghai</creatorcontrib><creatorcontrib>Lee, Bok Luel</creatorcontrib><title>Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects.</description><subject>Amidase</subject><subject>Animals</subject><subject>Antimicrobial peptides</subject><subject>b-1,3-Glucan</subject><subject>Bacteria</subject><subject>Bacteria - immunology</subject><subject>Bacteria - metabolism</subject><subject>Base Sequence</subject><subject>beta -1,3-Glucan</subject><subject>Biological diversity</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - immunology</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Wall</subject><subject>Defensins - biosynthesis</subject><subject>Defensins - genetics</subject><subject>Defensins - immunology</subject><subject>Diaminopimelic Acid</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - immunology</subject><subject>Drosophila Proteins - metabolism</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacilli</subject><subject>Gram-positive bacteria</subject><subject>Hemocytes</subject><subject>Humoral Response</subject><subject>Imd Pathway</subject><subject>Immune response</subject><subject>Immunity, Innate - physiology</subject><subject>Immunology</subject><subject>Infection</subject><subject>Innate Immunity</subject><subject>Insect</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - immunology</subject><subject>Insect Proteins - metabolism</subject><subject>Larvae</subject><subject>Molecular Sequence Data</subject><subject>Pattern Recognition Receptor</subject><subject>Peptidoglycan</subject><subject>Peptidoglycan - immunology</subject><subject>Peptidoglycan - metabolism</subject><subject>peptidoglycans</subject><subject>PGRP</subject><subject>Proteolysis</subject><subject>Signal Transduction</subject><subject>Species Specificity</subject><subject>Tenebrio</subject><subject>Tenebrio - genetics</subject><subject>Tenebrio - immunology</subject><subject>Tenebrio - metabolism</subject><subject>Tenebrio - microbiology</subject><subject>Tenebrio molitor</subject><subject>Toll Receptors</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkjtvFDEUhUcIRJZATQfuqCbxax5ukELCY6VEREAkOsv23NncaMbe2LMrTZW_Hq82RFAgcOPXd8-1dU5RvGb0iNFGHt9Yd3TBdjspKZNPigWjrShFxX4-LRaUclYqXrUHxYuUbmgeUrHnxQGnDeWS1Yvi7gy3EBNOMwk9WXpvJiDLcdx4IN_AhZXHCYMnF-Cujcc0kj5E8sG4CSKagVyGYR7z0pERUijP0IzowxpHGPLZicOunOY1kEtYT9iF1TA74wn63CqBm9LL4llvhgSvHubD4urTxx-nX8rzr5-Xpyfnpasln8qmEy0VvTK1AmYFp3VFBTPOMtN10opKVMAqZXsh-44ay6hpobZcic5aya04LN7vddcbO0LnwE_RDHodcTRx1sGg_vPG47Veha3mqhai4Vng3YNADLcbSJMeMTkYBuMhbJJuGyWbRjH1H6RkGeT1P8mmUkxkd3fk8Z50MaQUoX98OaN6lwSdk6B3SdD7JOSKN79_-JH_ZX0G3u6B3gRtVhGTvvrOKROUtaqtKc2E2hOQjdkiRJ0cgnfQYcze6S7gX9vfAx28zkI</recordid><startdate>20101022</startdate><enddate>20101022</enddate><creator>Yu, Yang</creator><creator>Park, Ji-Won</creator><creator>Kwon, Hyun-Mi</creator><creator>Hwang, Hyun-Ok</creator><creator>Jang, In-Hwan</creator><creator>Masuda, Akiko</creator><creator>Kurokawa, Kenji</creator><creator>Nakayama, Hiroshi</creator><creator>Lee, Won-Jae</creator><creator>Dohmae, Naoshi</creator><creator>Zhang, Jinghai</creator><creator>Lee, Bok Luel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7SS</scope><scope>7T5</scope><scope>C1K</scope><scope>H94</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20101022</creationdate><title>Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects</title><author>Yu, Yang ; Park, Ji-Won ; Kwon, Hyun-Mi ; Hwang, Hyun-Ok ; Jang, In-Hwan ; Masuda, Akiko ; Kurokawa, Kenji ; Nakayama, Hiroshi ; Lee, Won-Jae ; Dohmae, Naoshi ; Zhang, Jinghai ; Lee, Bok Luel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-7d3803f9a69e1b32065031acb1add4b3535e159bf34fd0ab10a8e6b293dbb42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amidase</topic><topic>Animals</topic><topic>Antimicrobial peptides</topic><topic>b-1,3-Glucan</topic><topic>Bacteria</topic><topic>Bacteria - immunology</topic><topic>Bacteria - metabolism</topic><topic>Base Sequence</topic><topic>beta -1,3-Glucan</topic><topic>Biological diversity</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - immunology</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Wall</topic><topic>Defensins - biosynthesis</topic><topic>Defensins - genetics</topic><topic>Defensins - immunology</topic><topic>Diaminopimelic Acid</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - immunology</topic><topic>Drosophila Proteins - metabolism</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacilli</topic><topic>Gram-positive bacteria</topic><topic>Hemocytes</topic><topic>Humoral Response</topic><topic>Imd Pathway</topic><topic>Immune response</topic><topic>Immunity, Innate - physiology</topic><topic>Immunology</topic><topic>Infection</topic><topic>Innate Immunity</topic><topic>Insect</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - immunology</topic><topic>Insect Proteins - metabolism</topic><topic>Larvae</topic><topic>Molecular Sequence Data</topic><topic>Pattern Recognition Receptor</topic><topic>Peptidoglycan</topic><topic>Peptidoglycan - immunology</topic><topic>Peptidoglycan - metabolism</topic><topic>peptidoglycans</topic><topic>PGRP</topic><topic>Proteolysis</topic><topic>Signal Transduction</topic><topic>Species Specificity</topic><topic>Tenebrio</topic><topic>Tenebrio - genetics</topic><topic>Tenebrio - immunology</topic><topic>Tenebrio - metabolism</topic><topic>Tenebrio - microbiology</topic><topic>Tenebrio molitor</topic><topic>Toll Receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Park, Ji-Won</creatorcontrib><creatorcontrib>Kwon, Hyun-Mi</creatorcontrib><creatorcontrib>Hwang, Hyun-Ok</creatorcontrib><creatorcontrib>Jang, In-Hwan</creatorcontrib><creatorcontrib>Masuda, Akiko</creatorcontrib><creatorcontrib>Kurokawa, Kenji</creatorcontrib><creatorcontrib>Nakayama, Hiroshi</creatorcontrib><creatorcontrib>Lee, Won-Jae</creatorcontrib><creatorcontrib>Dohmae, Naoshi</creatorcontrib><creatorcontrib>Zhang, Jinghai</creatorcontrib><creatorcontrib>Lee, Bok Luel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yang</au><au>Park, Ji-Won</au><au>Kwon, Hyun-Mi</au><au>Hwang, Hyun-Ok</au><au>Jang, In-Hwan</au><au>Masuda, Akiko</au><au>Kurokawa, Kenji</au><au>Nakayama, Hiroshi</au><au>Lee, Won-Jae</au><au>Dohmae, Naoshi</au><au>Zhang, Jinghai</au><au>Lee, Bok Luel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-10-22</date><risdate>2010</risdate><volume>285</volume><issue>43</issue><spage>32937</spage><epage>32945</epage><pages>32937-32945</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20702416</pmid><doi>10.1074/jbc.M110.144014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-10, Vol.285 (43), p.32937-32945
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2963372
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Amidase
Animals
Antimicrobial peptides
b-1,3-Glucan
Bacteria
Bacteria - immunology
Bacteria - metabolism
Base Sequence
beta -1,3-Glucan
Biological diversity
Carrier Proteins - genetics
Carrier Proteins - immunology
Carrier Proteins - metabolism
Cell Wall
Defensins - biosynthesis
Defensins - genetics
Defensins - immunology
Diaminopimelic Acid
Drosophila
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - immunology
Drosophila Proteins - metabolism
Gram-negative bacteria
Gram-positive bacilli
Gram-positive bacteria
Hemocytes
Humoral Response
Imd Pathway
Immune response
Immunity, Innate - physiology
Immunology
Infection
Innate Immunity
Insect
Insect Proteins - genetics
Insect Proteins - immunology
Insect Proteins - metabolism
Larvae
Molecular Sequence Data
Pattern Recognition Receptor
Peptidoglycan
Peptidoglycan - immunology
Peptidoglycan - metabolism
peptidoglycans
PGRP
Proteolysis
Signal Transduction
Species Specificity
Tenebrio
Tenebrio - genetics
Tenebrio - immunology
Tenebrio - metabolism
Tenebrio - microbiology
Tenebrio molitor
Toll Receptors
title Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20of%20Innate%20Immune%20Recognition%20Mechanism%20for%20Bacterial%20Polymeric%20meso-Diaminopimelic%20Acid-type%20Peptidoglycan%20in%20Insects&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yu,%20Yang&rft.date=2010-10-22&rft.volume=285&rft.issue=43&rft.spage=32937&rft.epage=32945&rft.pages=32937-32945&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.144014&rft_dat=%3Cproquest_pubme%3E879477919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759131106&rft_id=info:pmid/20702416&rft_els_id=S0021925820471753&rfr_iscdi=true