CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1
Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither C...
Gespeichert in:
Veröffentlicht in: | Genes & development 2010-10, Vol.24 (20), p.2303-2316 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2316 |
---|---|
container_issue | 20 |
container_start_page | 2303 |
container_title | Genes & development |
container_volume | 24 |
creator | Bartkowiak, Bartlomiej Liu, Pengda Phatnani, Hemali P Fuda, Nicholas J Cooper, Jeffrey J Price, David H Adelman, Karen Lis, John T Greenleaf, Arno L |
description | Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1. |
doi_str_mv | 10.1101/gad.1968210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2956209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>759132819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</originalsourceid><addsrcrecordid>eNqFkUFP3DAQRi3Uqiy0J-7INw5t6Izj2PEFCYXSoiL1Qq-1vM5k15CNl9hbCX59s2JBcOppRpqnTzPzGDtCOEUE_Lpw7SkaVQuEPTbDSpqiklq_YzOoDRSmVGafHaR0CwAKlPrA9gWYSlSlmbE_zcVPFDwk7nge3ZD8GNY5xIFTH4eF27aFSyn64DK1vLm54HdhcIm-8LwkvqLsHqMbeBzzMvZxwWPHH8ilzJt8hx_Z-871iT7t6iH7ffntpvlRXP_6ftWcXxde6joXppLSmZZkJ6hVEkDMBSmtUQNp71FKiZUpBYEvtZk7X2PbehBdDb4zGspDdvaUu97MV9R6GqZjersew8qNDza6YN9OhrC0i_jXClOp6RtTwMkuYIz3G0rZrkLy1PduoLhJti6NMhIF_pfUlcFS1LjN_PxE-jGmNFL3sg-C3aqzkzq7UzfRx69PeGGfXZX_APqllHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759132819</pqid></control><display><type>article</type><title>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bartkowiak, Bartlomiej ; Liu, Pengda ; Phatnani, Hemali P ; Fuda, Nicholas J ; Cooper, Jeffrey J ; Price, David H ; Adelman, Karen ; Lis, John T ; Greenleaf, Arno L</creator><creatorcontrib>Bartkowiak, Bartlomiej ; Liu, Pengda ; Phatnani, Hemali P ; Fuda, Nicholas J ; Cooper, Jeffrey J ; Price, David H ; Adelman, Karen ; Lis, John T ; Greenleaf, Arno L</creatorcontrib><description>Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.1968210</identifier><identifier>PMID: 20952539</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Blotting, Western ; CDC2 Protein Kinase - genetics ; CDC2 Protein Kinase - metabolism ; Cell Line ; Chromosome Mapping ; Cyclin T - genetics ; Cyclin T - metabolism ; Cyclin-Dependent Kinase 9 - genetics ; Cyclin-Dependent Kinase 9 - metabolism ; Cyclin-Dependent Kinases - genetics ; Cyclin-Dependent Kinases - metabolism ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Genetic Complementation Test ; HeLa Cells ; Humans ; Metazoa ; Microscopy, Fluorescence ; Mutation ; Phosphorylation ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Research Paper ; RNA Interference ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Genes & development, 2010-10, Vol.24 (20), p.2303-2316</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</citedby><cites>FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956209/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956209/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20952539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartkowiak, Bartlomiej</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Phatnani, Hemali P</creatorcontrib><creatorcontrib>Fuda, Nicholas J</creatorcontrib><creatorcontrib>Cooper, Jeffrey J</creatorcontrib><creatorcontrib>Price, David H</creatorcontrib><creatorcontrib>Adelman, Karen</creatorcontrib><creatorcontrib>Lis, John T</creatorcontrib><creatorcontrib>Greenleaf, Arno L</creatorcontrib><title>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</title><title>Genes & development</title><addtitle>Genes Dev</addtitle><description>Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>CDC2 Protein Kinase - genetics</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>Cell Line</subject><subject>Chromosome Mapping</subject><subject>Cyclin T - genetics</subject><subject>Cyclin T - metabolism</subject><subject>Cyclin-Dependent Kinase 9 - genetics</subject><subject>Cyclin-Dependent Kinase 9 - metabolism</subject><subject>Cyclin-Dependent Kinases - genetics</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Genetic Complementation Test</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Metazoa</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Research Paper</subject><subject>RNA Interference</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQRi3Uqiy0J-7INw5t6Izj2PEFCYXSoiL1Qq-1vM5k15CNl9hbCX59s2JBcOppRpqnTzPzGDtCOEUE_Lpw7SkaVQuEPTbDSpqiklq_YzOoDRSmVGafHaR0CwAKlPrA9gWYSlSlmbE_zcVPFDwk7nge3ZD8GNY5xIFTH4eF27aFSyn64DK1vLm54HdhcIm-8LwkvqLsHqMbeBzzMvZxwWPHH8ilzJt8hx_Z-871iT7t6iH7ffntpvlRXP_6ftWcXxde6joXppLSmZZkJ6hVEkDMBSmtUQNp71FKiZUpBYEvtZk7X2PbehBdDb4zGspDdvaUu97MV9R6GqZjersew8qNDza6YN9OhrC0i_jXClOp6RtTwMkuYIz3G0rZrkLy1PduoLhJti6NMhIF_pfUlcFS1LjN_PxE-jGmNFL3sg-C3aqzkzq7UzfRx69PeGGfXZX_APqllHA</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Bartkowiak, Bartlomiej</creator><creator>Liu, Pengda</creator><creator>Phatnani, Hemali P</creator><creator>Fuda, Nicholas J</creator><creator>Cooper, Jeffrey J</creator><creator>Price, David H</creator><creator>Adelman, Karen</creator><creator>Lis, John T</creator><creator>Greenleaf, Arno L</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20101015</creationdate><title>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</title><author>Bartkowiak, Bartlomiej ; Liu, Pengda ; Phatnani, Hemali P ; Fuda, Nicholas J ; Cooper, Jeffrey J ; Price, David H ; Adelman, Karen ; Lis, John T ; Greenleaf, Arno L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>CDC2 Protein Kinase - genetics</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>Cell Line</topic><topic>Chromosome Mapping</topic><topic>Cyclin T - genetics</topic><topic>Cyclin T - metabolism</topic><topic>Cyclin-Dependent Kinase 9 - genetics</topic><topic>Cyclin-Dependent Kinase 9 - metabolism</topic><topic>Cyclin-Dependent Kinases - genetics</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Genetic Complementation Test</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Metazoa</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Research Paper</topic><topic>RNA Interference</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartkowiak, Bartlomiej</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Phatnani, Hemali P</creatorcontrib><creatorcontrib>Fuda, Nicholas J</creatorcontrib><creatorcontrib>Cooper, Jeffrey J</creatorcontrib><creatorcontrib>Price, David H</creatorcontrib><creatorcontrib>Adelman, Karen</creatorcontrib><creatorcontrib>Lis, John T</creatorcontrib><creatorcontrib>Greenleaf, Arno L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartkowiak, Bartlomiej</au><au>Liu, Pengda</au><au>Phatnani, Hemali P</au><au>Fuda, Nicholas J</au><au>Cooper, Jeffrey J</au><au>Price, David H</au><au>Adelman, Karen</au><au>Lis, John T</au><au>Greenleaf, Arno L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</atitle><jtitle>Genes & development</jtitle><addtitle>Genes Dev</addtitle><date>2010-10-15</date><risdate>2010</risdate><volume>24</volume><issue>20</issue><spage>2303</spage><epage>2316</epage><pages>2303-2316</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>20952539</pmid><doi>10.1101/gad.1968210</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-9369 |
ispartof | Genes & development, 2010-10, Vol.24 (20), p.2303-2316 |
issn | 0890-9369 1549-5477 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2956209 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Blotting, Western CDC2 Protein Kinase - genetics CDC2 Protein Kinase - metabolism Cell Line Chromosome Mapping Cyclin T - genetics Cyclin T - metabolism Cyclin-Dependent Kinase 9 - genetics Cyclin-Dependent Kinase 9 - metabolism Cyclin-Dependent Kinases - genetics Cyclin-Dependent Kinases - metabolism Drosophila Drosophila melanogaster - cytology Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Genetic Complementation Test HeLa Cells Humans Metazoa Microscopy, Fluorescence Mutation Phosphorylation Protein Kinases - genetics Protein Kinases - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Research Paper RNA Interference RNA Polymerase II - genetics RNA Polymerase II - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
title | CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDK12%20is%20a%20transcription%20elongation-associated%20CTD%20kinase,%20the%20metazoan%20ortholog%20of%20yeast%20Ctk1&rft.jtitle=Genes%20&%20development&rft.au=Bartkowiak,%20Bartlomiej&rft.date=2010-10-15&rft.volume=24&rft.issue=20&rft.spage=2303&rft.epage=2316&rft.pages=2303-2316&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.1968210&rft_dat=%3Cproquest_pubme%3E759132819%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759132819&rft_id=info:pmid/20952539&rfr_iscdi=true |