CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1

Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2010-10, Vol.24 (20), p.2303-2316
Hauptverfasser: Bartkowiak, Bartlomiej, Liu, Pengda, Phatnani, Hemali P, Fuda, Nicholas J, Cooper, Jeffrey J, Price, David H, Adelman, Karen, Lis, John T, Greenleaf, Arno L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2316
container_issue 20
container_start_page 2303
container_title Genes & development
container_volume 24
creator Bartkowiak, Bartlomiej
Liu, Pengda
Phatnani, Hemali P
Fuda, Nicholas J
Cooper, Jeffrey J
Price, David H
Adelman, Karen
Lis, John T
Greenleaf, Arno L
description Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.
doi_str_mv 10.1101/gad.1968210
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2956209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>759132819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</originalsourceid><addsrcrecordid>eNqFkUFP3DAQRi3Uqiy0J-7INw5t6Izj2PEFCYXSoiL1Qq-1vM5k15CNl9hbCX59s2JBcOppRpqnTzPzGDtCOEUE_Lpw7SkaVQuEPTbDSpqiklq_YzOoDRSmVGafHaR0CwAKlPrA9gWYSlSlmbE_zcVPFDwk7nge3ZD8GNY5xIFTH4eF27aFSyn64DK1vLm54HdhcIm-8LwkvqLsHqMbeBzzMvZxwWPHH8ilzJt8hx_Z-871iT7t6iH7ffntpvlRXP_6ftWcXxde6joXppLSmZZkJ6hVEkDMBSmtUQNp71FKiZUpBYEvtZk7X2PbehBdDb4zGspDdvaUu97MV9R6GqZjersew8qNDza6YN9OhrC0i_jXClOp6RtTwMkuYIz3G0rZrkLy1PduoLhJti6NMhIF_pfUlcFS1LjN_PxE-jGmNFL3sg-C3aqzkzq7UzfRx69PeGGfXZX_APqllHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759132819</pqid></control><display><type>article</type><title>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bartkowiak, Bartlomiej ; Liu, Pengda ; Phatnani, Hemali P ; Fuda, Nicholas J ; Cooper, Jeffrey J ; Price, David H ; Adelman, Karen ; Lis, John T ; Greenleaf, Arno L</creator><creatorcontrib>Bartkowiak, Bartlomiej ; Liu, Pengda ; Phatnani, Hemali P ; Fuda, Nicholas J ; Cooper, Jeffrey J ; Price, David H ; Adelman, Karen ; Lis, John T ; Greenleaf, Arno L</creatorcontrib><description>Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.1968210</identifier><identifier>PMID: 20952539</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Blotting, Western ; CDC2 Protein Kinase - genetics ; CDC2 Protein Kinase - metabolism ; Cell Line ; Chromosome Mapping ; Cyclin T - genetics ; Cyclin T - metabolism ; Cyclin-Dependent Kinase 9 - genetics ; Cyclin-Dependent Kinase 9 - metabolism ; Cyclin-Dependent Kinases - genetics ; Cyclin-Dependent Kinases - metabolism ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Genetic Complementation Test ; HeLa Cells ; Humans ; Metazoa ; Microscopy, Fluorescence ; Mutation ; Phosphorylation ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Research Paper ; RNA Interference ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Genes &amp; development, 2010-10, Vol.24 (20), p.2303-2316</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</citedby><cites>FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956209/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956209/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20952539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartkowiak, Bartlomiej</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Phatnani, Hemali P</creatorcontrib><creatorcontrib>Fuda, Nicholas J</creatorcontrib><creatorcontrib>Cooper, Jeffrey J</creatorcontrib><creatorcontrib>Price, David H</creatorcontrib><creatorcontrib>Adelman, Karen</creatorcontrib><creatorcontrib>Lis, John T</creatorcontrib><creatorcontrib>Greenleaf, Arno L</creatorcontrib><title>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>CDC2 Protein Kinase - genetics</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>Cell Line</subject><subject>Chromosome Mapping</subject><subject>Cyclin T - genetics</subject><subject>Cyclin T - metabolism</subject><subject>Cyclin-Dependent Kinase 9 - genetics</subject><subject>Cyclin-Dependent Kinase 9 - metabolism</subject><subject>Cyclin-Dependent Kinases - genetics</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Genetic Complementation Test</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Metazoa</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Research Paper</subject><subject>RNA Interference</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQRi3Uqiy0J-7INw5t6Izj2PEFCYXSoiL1Qq-1vM5k15CNl9hbCX59s2JBcOppRpqnTzPzGDtCOEUE_Lpw7SkaVQuEPTbDSpqiklq_YzOoDRSmVGafHaR0CwAKlPrA9gWYSlSlmbE_zcVPFDwk7nge3ZD8GNY5xIFTH4eF27aFSyn64DK1vLm54HdhcIm-8LwkvqLsHqMbeBzzMvZxwWPHH8ilzJt8hx_Z-871iT7t6iH7ffntpvlRXP_6ftWcXxde6joXppLSmZZkJ6hVEkDMBSmtUQNp71FKiZUpBYEvtZk7X2PbehBdDb4zGspDdvaUu97MV9R6GqZjersew8qNDza6YN9OhrC0i_jXClOp6RtTwMkuYIz3G0rZrkLy1PduoLhJti6NMhIF_pfUlcFS1LjN_PxE-jGmNFL3sg-C3aqzkzq7UzfRx69PeGGfXZX_APqllHA</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Bartkowiak, Bartlomiej</creator><creator>Liu, Pengda</creator><creator>Phatnani, Hemali P</creator><creator>Fuda, Nicholas J</creator><creator>Cooper, Jeffrey J</creator><creator>Price, David H</creator><creator>Adelman, Karen</creator><creator>Lis, John T</creator><creator>Greenleaf, Arno L</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20101015</creationdate><title>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</title><author>Bartkowiak, Bartlomiej ; Liu, Pengda ; Phatnani, Hemali P ; Fuda, Nicholas J ; Cooper, Jeffrey J ; Price, David H ; Adelman, Karen ; Lis, John T ; Greenleaf, Arno L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9544a9de4f2ed64002b2e677170e7cc144415932e0c379bac81ddc02f80cf9703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>CDC2 Protein Kinase - genetics</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>Cell Line</topic><topic>Chromosome Mapping</topic><topic>Cyclin T - genetics</topic><topic>Cyclin T - metabolism</topic><topic>Cyclin-Dependent Kinase 9 - genetics</topic><topic>Cyclin-Dependent Kinase 9 - metabolism</topic><topic>Cyclin-Dependent Kinases - genetics</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Genetic Complementation Test</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Metazoa</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Research Paper</topic><topic>RNA Interference</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartkowiak, Bartlomiej</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Phatnani, Hemali P</creatorcontrib><creatorcontrib>Fuda, Nicholas J</creatorcontrib><creatorcontrib>Cooper, Jeffrey J</creatorcontrib><creatorcontrib>Price, David H</creatorcontrib><creatorcontrib>Adelman, Karen</creatorcontrib><creatorcontrib>Lis, John T</creatorcontrib><creatorcontrib>Greenleaf, Arno L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartkowiak, Bartlomiej</au><au>Liu, Pengda</au><au>Phatnani, Hemali P</au><au>Fuda, Nicholas J</au><au>Cooper, Jeffrey J</au><au>Price, David H</au><au>Adelman, Karen</au><au>Lis, John T</au><au>Greenleaf, Arno L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2010-10-15</date><risdate>2010</risdate><volume>24</volume><issue>20</issue><spage>2303</spage><epage>2316</epage><pages>2303-2316</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>20952539</pmid><doi>10.1101/gad.1968210</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2010-10, Vol.24 (20), p.2303-2316
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2956209
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Blotting, Western
CDC2 Protein Kinase - genetics
CDC2 Protein Kinase - metabolism
Cell Line
Chromosome Mapping
Cyclin T - genetics
Cyclin T - metabolism
Cyclin-Dependent Kinase 9 - genetics
Cyclin-Dependent Kinase 9 - metabolism
Cyclin-Dependent Kinases - genetics
Cyclin-Dependent Kinases - metabolism
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Genetic Complementation Test
HeLa Cells
Humans
Metazoa
Microscopy, Fluorescence
Mutation
Phosphorylation
Protein Kinases - genetics
Protein Kinases - metabolism
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Research Paper
RNA Interference
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
title CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDK12%20is%20a%20transcription%20elongation-associated%20CTD%20kinase,%20the%20metazoan%20ortholog%20of%20yeast%20Ctk1&rft.jtitle=Genes%20&%20development&rft.au=Bartkowiak,%20Bartlomiej&rft.date=2010-10-15&rft.volume=24&rft.issue=20&rft.spage=2303&rft.epage=2316&rft.pages=2303-2316&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.1968210&rft_dat=%3Cproquest_pubme%3E759132819%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759132819&rft_id=info:pmid/20952539&rfr_iscdi=true