Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain
Although the N terminus of the prion protein (PrPC) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-10, Vol.285 (42), p.32282-32292 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32292 |
---|---|
container_issue | 42 |
container_start_page | 32282 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Boland, Martin P. Hatty, Claire R. Separovic, Frances Hill, Andrew F. Tew, Deborah J. Barnham, Kevin J. Haigh, Cathryn L. James, Michael Masters, Colin L. Collins, Steven J. |
description | Although the N terminus of the prion protein (PrPC) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23–110) and N2 (23–89) fragments derived from constitutive processing of PrPC and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed. |
doi_str_mv | 10.1074/jbc.M110.123398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2952229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820472771</els_id><sourcerecordid>856764057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-5c1e73658323d7c0ceb028720f55bdcef3a33ad8d01c9d617367b983fc7c0b883</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIREPhzA1845TWH-u1fUGKylelfkS0lbhZXu9s4mpjL7Y3Un4G_xiHlAoOCB_GGs0zrz3zVtVrgk8IFvXpfWtPLsk-o4wp-aSaESzZnHHy7Wk1w5iSuaJcHlUvUrrH5dSKPK-OKG6EYjWfVT8W3gXvLFquQxrXYXCj69C5zxCNzaWUUOhRXgNaxpKVGDI4j67QLcSN81NCiwjo0nm3McOwQ0uIeYqt8ytkfIeuQkYfotuCRzdhgAK0u19y1zabEcbsOkBfYQRTuLAxzr-snvVmSPDq4T6u7j59vD37Mr-4_nx-triY21rJPOeWgGANl4yyTlhsocVUCop7ztvOQs8MY6aTHSZWdQ0prGiVZL0tcCslO67eH3THqd1A6fA5mkGPsQwSdzoYp_-ueLfWq7DVVHFKqSoC7x4EYvg-Qcp645KFYTAewpS05I1oaszFf0nBRd0QLvbk6YG0MaQUoX_8D8F677gujuu94_rgeOl48-cYj_xviwvw9gD0Jmizii7puxuKCcNEKsnpXkIdCCjr3jqIOlkH3kLnItisu-D--fxP61zGnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757461577</pqid></control><display><type>article</type><title>Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Boland, Martin P. ; Hatty, Claire R. ; Separovic, Frances ; Hill, Andrew F. ; Tew, Deborah J. ; Barnham, Kevin J. ; Haigh, Cathryn L. ; James, Michael ; Masters, Colin L. ; Collins, Steven J.</creator><creatorcontrib>Boland, Martin P. ; Hatty, Claire R. ; Separovic, Frances ; Hill, Andrew F. ; Tew, Deborah J. ; Barnham, Kevin J. ; Haigh, Cathryn L. ; James, Michael ; Masters, Colin L. ; Collins, Steven J.</creatorcontrib><description>Although the N terminus of the prion protein (PrPC) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23–110) and N2 (23–89) fragments derived from constitutive processing of PrPC and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.123398</identifier><identifier>PMID: 20679345</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Anions - chemistry ; Anions - metabolism ; Endosomes ; Humans ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane Lipids ; Mice ; Molecular Biophysics ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Peptides - chemical synthesis ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; Phosphatidylglycerol ; Phosphatidylserine ; Phospholipids - chemistry ; Phospholipids - metabolism ; Prion Proteins ; Prions ; Prions - chemistry ; Prions - genetics ; Prions - metabolism ; Protein Binding ; Protein Structure, Secondary ; Quartz Crystal Microbalance ; Signal Transduction ; Solid-state NMR ; Unilamellar Liposomes - chemistry</subject><ispartof>The Journal of biological chemistry, 2010-10, Vol.285 (42), p.32282-32292</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-5c1e73658323d7c0ceb028720f55bdcef3a33ad8d01c9d617367b983fc7c0b883</citedby><cites>FETCH-LOGICAL-c498t-5c1e73658323d7c0ceb028720f55bdcef3a33ad8d01c9d617367b983fc7c0b883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952229/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952229/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20679345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boland, Martin P.</creatorcontrib><creatorcontrib>Hatty, Claire R.</creatorcontrib><creatorcontrib>Separovic, Frances</creatorcontrib><creatorcontrib>Hill, Andrew F.</creatorcontrib><creatorcontrib>Tew, Deborah J.</creatorcontrib><creatorcontrib>Barnham, Kevin J.</creatorcontrib><creatorcontrib>Haigh, Cathryn L.</creatorcontrib><creatorcontrib>James, Michael</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Collins, Steven J.</creatorcontrib><title>Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Although the N terminus of the prion protein (PrPC) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23–110) and N2 (23–89) fragments derived from constitutive processing of PrPC and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anions - chemistry</subject><subject>Anions - metabolism</subject><subject>Endosomes</subject><subject>Humans</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane Lipids</subject><subject>Mice</subject><subject>Molecular Biophysics</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Phosphatidylglycerol</subject><subject>Phosphatidylserine</subject><subject>Phospholipids - chemistry</subject><subject>Phospholipids - metabolism</subject><subject>Prion Proteins</subject><subject>Prions</subject><subject>Prions - chemistry</subject><subject>Prions - genetics</subject><subject>Prions - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Quartz Crystal Microbalance</subject><subject>Signal Transduction</subject><subject>Solid-state NMR</subject><subject>Unilamellar Liposomes - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhlcIREPhzA1845TWH-u1fUGKylelfkS0lbhZXu9s4mpjL7Y3Un4G_xiHlAoOCB_GGs0zrz3zVtVrgk8IFvXpfWtPLsk-o4wp-aSaESzZnHHy7Wk1w5iSuaJcHlUvUrrH5dSKPK-OKG6EYjWfVT8W3gXvLFquQxrXYXCj69C5zxCNzaWUUOhRXgNaxpKVGDI4j67QLcSN81NCiwjo0nm3McOwQ0uIeYqt8ytkfIeuQkYfotuCRzdhgAK0u19y1zabEcbsOkBfYQRTuLAxzr-snvVmSPDq4T6u7j59vD37Mr-4_nx-triY21rJPOeWgGANl4yyTlhsocVUCop7ztvOQs8MY6aTHSZWdQ0prGiVZL0tcCslO67eH3THqd1A6fA5mkGPsQwSdzoYp_-ueLfWq7DVVHFKqSoC7x4EYvg-Qcp645KFYTAewpS05I1oaszFf0nBRd0QLvbk6YG0MaQUoX_8D8F677gujuu94_rgeOl48-cYj_xviwvw9gD0Jmizii7puxuKCcNEKsnpXkIdCCjr3jqIOlkH3kLnItisu-D--fxP61zGnA</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Boland, Martin P.</creator><creator>Hatty, Claire R.</creator><creator>Separovic, Frances</creator><creator>Hill, Andrew F.</creator><creator>Tew, Deborah J.</creator><creator>Barnham, Kevin J.</creator><creator>Haigh, Cathryn L.</creator><creator>James, Michael</creator><creator>Masters, Colin L.</creator><creator>Collins, Steven J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20101015</creationdate><title>Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain</title><author>Boland, Martin P. ; Hatty, Claire R. ; Separovic, Frances ; Hill, Andrew F. ; Tew, Deborah J. ; Barnham, Kevin J. ; Haigh, Cathryn L. ; James, Michael ; Masters, Colin L. ; Collins, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-5c1e73658323d7c0ceb028720f55bdcef3a33ad8d01c9d617367b983fc7c0b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anions - chemistry</topic><topic>Anions - metabolism</topic><topic>Endosomes</topic><topic>Humans</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane Lipids</topic><topic>Mice</topic><topic>Molecular Biophysics</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Phosphatidylglycerol</topic><topic>Phosphatidylserine</topic><topic>Phospholipids - chemistry</topic><topic>Phospholipids - metabolism</topic><topic>Prion Proteins</topic><topic>Prions</topic><topic>Prions - chemistry</topic><topic>Prions - genetics</topic><topic>Prions - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Quartz Crystal Microbalance</topic><topic>Signal Transduction</topic><topic>Solid-state NMR</topic><topic>Unilamellar Liposomes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boland, Martin P.</creatorcontrib><creatorcontrib>Hatty, Claire R.</creatorcontrib><creatorcontrib>Separovic, Frances</creatorcontrib><creatorcontrib>Hill, Andrew F.</creatorcontrib><creatorcontrib>Tew, Deborah J.</creatorcontrib><creatorcontrib>Barnham, Kevin J.</creatorcontrib><creatorcontrib>Haigh, Cathryn L.</creatorcontrib><creatorcontrib>James, Michael</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Collins, Steven J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boland, Martin P.</au><au>Hatty, Claire R.</au><au>Separovic, Frances</au><au>Hill, Andrew F.</au><au>Tew, Deborah J.</au><au>Barnham, Kevin J.</au><au>Haigh, Cathryn L.</au><au>James, Michael</au><au>Masters, Colin L.</au><au>Collins, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-10-15</date><risdate>2010</risdate><volume>285</volume><issue>42</issue><spage>32282</spage><epage>32292</epage><pages>32282-32292</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Although the N terminus of the prion protein (PrPC) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23–110) and N2 (23–89) fragments derived from constitutive processing of PrPC and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20679345</pmid><doi>10.1074/jbc.M110.123398</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-10, Vol.285 (42), p.32282-32292 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2952229 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Animals Anions - chemistry Anions - metabolism Endosomes Humans Lipid Bilayers - chemistry Lipid Bilayers - metabolism Membrane Lipids Mice Molecular Biophysics Molecular Sequence Data Nuclear Magnetic Resonance, Biomolecular Peptides - chemical synthesis Peptides - chemistry Peptides - genetics Peptides - metabolism Phosphatidylglycerol Phosphatidylserine Phospholipids - chemistry Phospholipids - metabolism Prion Proteins Prions Prions - chemistry Prions - genetics Prions - metabolism Protein Binding Protein Structure, Secondary Quartz Crystal Microbalance Signal Transduction Solid-state NMR Unilamellar Liposomes - chemistry |
title | Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anionic%20Phospholipid%20Interactions%20of%20the%20Prion%20Protein%20N%20Terminus%20Are%20Minimally%20Perturbing%20and%20Not%20Driven%20Solely%20by%20the%20Octapeptide%20Repeat%20Domain&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Boland,%20Martin%20P.&rft.date=2010-10-15&rft.volume=285&rft.issue=42&rft.spage=32282&rft.epage=32292&rft.pages=32282-32292&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.123398&rft_dat=%3Cproquest_pubme%3E856764057%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757461577&rft_id=info:pmid/20679345&rft_els_id=S0021925820472771&rfr_iscdi=true |