Genomic adaptation of prokaryotic organisms at high temperature

One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformation 2010-02, Vol.4 (8), p.352-356
Hauptverfasser: Basak, Surajit, Mukhopadhyay, Pamela, Gupta, Sanjib Kumar, Ghosh, Tapash Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 8
container_start_page 352
container_title Bioinformation
container_volume 4
creator Basak, Surajit
Mukhopadhyay, Pamela
Gupta, Sanjib Kumar
Ghosh, Tapash Chandra
description One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanine and cytosine content between species. However, there has been a long-standing debate regarding the correlations between genomic GC content and optimal growth temperature (Topt). We urged that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting: (i) nucleic acid thermostability and (ii) stability of codon-anticodon interactions. Moreover, in Bacillaceae family we have demonstrated that a higher genomic GC level do not have any role in stabilizing mRNA secondary structure at high growth temperature. Comparative analysis between homologous sequences of thermophilic Thermus thermophilus and mesophilic Deinococcus radiodurans suggests that increased levels of GC contents in the coding sequence corresponding to strand structure of Thermus thermophilus genes have stabilizing effect on the mRNA secondary structure, whereas increased levels of GC contents in coding sequences corresponding to aperiodic structure have destabilizing effect on the mRNA secondary structure. In this perspective, a critical review of thermal adaptation hypothesis is further advocated.
doi_str_mv 10.6026/97320630004352
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2951671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>760209156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-261f1082f8c97b24d3e44f2f17d515aa9b99fce800b1ea42885c41d8d00df3053</originalsourceid><addsrcrecordid>eNpVUD1PwzAUtBCIlsLKiLIxpfgjTuwFhCooSJVYYLYcx24NSRxsB4l_j6sWRKf3dHfv3ukAuERwXkJc3vCKYFgSCGFBKD4CU5iQfAsd73fGeDEBZyG8Jw2qKnoKJjgxlHE-BXdL3bvOqkw2cogyWtdnzmSDdx_Sf7uYGOfXsrehC5mM2cauN1nU3aC9jKPX5-DEyDboi_2cgbfHh9fFU756WT4v7le5IojHHJfIIMiwYYpXNS4aoovCYIOqhiIqJa85N0ozCGukZYEZo6pADWsgbAyBlMzA7c53GOtON0r30ctWDN52Kadw0opDprcbsXZfAnOKygolg-u9gXefow5RdDYo3bay124Mokp1Qo5omZTznVJ5F4LX5u8LgmJbujgsPR1c_c_2J_9tmfwASSF9Yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760209156</pqid></control><display><type>article</type><title>Genomic adaptation of prokaryotic organisms at high temperature</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Basak, Surajit ; Mukhopadhyay, Pamela ; Gupta, Sanjib Kumar ; Ghosh, Tapash Chandra</creator><creatorcontrib>Basak, Surajit ; Mukhopadhyay, Pamela ; Gupta, Sanjib Kumar ; Ghosh, Tapash Chandra</creatorcontrib><description>One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanine and cytosine content between species. However, there has been a long-standing debate regarding the correlations between genomic GC content and optimal growth temperature (Topt). We urged that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting: (i) nucleic acid thermostability and (ii) stability of codon-anticodon interactions. Moreover, in Bacillaceae family we have demonstrated that a higher genomic GC level do not have any role in stabilizing mRNA secondary structure at high growth temperature. Comparative analysis between homologous sequences of thermophilic Thermus thermophilus and mesophilic Deinococcus radiodurans suggests that increased levels of GC contents in the coding sequence corresponding to strand structure of Thermus thermophilus genes have stabilizing effect on the mRNA secondary structure, whereas increased levels of GC contents in coding sequences corresponding to aperiodic structure have destabilizing effect on the mRNA secondary structure. In this perspective, a critical review of thermal adaptation hypothesis is further advocated.</description><identifier>ISSN: 0973-8894</identifier><identifier>EISSN: 0973-2063</identifier><identifier>DOI: 10.6026/97320630004352</identifier><identifier>PMID: 20975899</identifier><language>eng</language><publisher>Singapore: Biomedical Informatics Publishing Group</publisher><subject>Hypothesis</subject><ispartof>Bioinformation, 2010-02, Vol.4 (8), p.352-356</ispartof><rights>2010 Biomedical Informatics Publishing Group 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-261f1082f8c97b24d3e44f2f17d515aa9b99fce800b1ea42885c41d8d00df3053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20975899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basak, Surajit</creatorcontrib><creatorcontrib>Mukhopadhyay, Pamela</creatorcontrib><creatorcontrib>Gupta, Sanjib Kumar</creatorcontrib><creatorcontrib>Ghosh, Tapash Chandra</creatorcontrib><title>Genomic adaptation of prokaryotic organisms at high temperature</title><title>Bioinformation</title><addtitle>Bioinformation</addtitle><description>One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanine and cytosine content between species. However, there has been a long-standing debate regarding the correlations between genomic GC content and optimal growth temperature (Topt). We urged that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting: (i) nucleic acid thermostability and (ii) stability of codon-anticodon interactions. Moreover, in Bacillaceae family we have demonstrated that a higher genomic GC level do not have any role in stabilizing mRNA secondary structure at high growth temperature. Comparative analysis between homologous sequences of thermophilic Thermus thermophilus and mesophilic Deinococcus radiodurans suggests that increased levels of GC contents in the coding sequence corresponding to strand structure of Thermus thermophilus genes have stabilizing effect on the mRNA secondary structure, whereas increased levels of GC contents in coding sequences corresponding to aperiodic structure have destabilizing effect on the mRNA secondary structure. In this perspective, a critical review of thermal adaptation hypothesis is further advocated.</description><subject>Hypothesis</subject><issn>0973-8894</issn><issn>0973-2063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVUD1PwzAUtBCIlsLKiLIxpfgjTuwFhCooSJVYYLYcx24NSRxsB4l_j6sWRKf3dHfv3ukAuERwXkJc3vCKYFgSCGFBKD4CU5iQfAsd73fGeDEBZyG8Jw2qKnoKJjgxlHE-BXdL3bvOqkw2cogyWtdnzmSDdx_Sf7uYGOfXsrehC5mM2cauN1nU3aC9jKPX5-DEyDboi_2cgbfHh9fFU756WT4v7le5IojHHJfIIMiwYYpXNS4aoovCYIOqhiIqJa85N0ozCGukZYEZo6pADWsgbAyBlMzA7c53GOtON0r30ctWDN52Kadw0opDprcbsXZfAnOKygolg-u9gXefow5RdDYo3bay124Mokp1Qo5omZTznVJ5F4LX5u8LgmJbujgsPR1c_c_2J_9tmfwASSF9Yg</recordid><startdate>20100228</startdate><enddate>20100228</enddate><creator>Basak, Surajit</creator><creator>Mukhopadhyay, Pamela</creator><creator>Gupta, Sanjib Kumar</creator><creator>Ghosh, Tapash Chandra</creator><general>Biomedical Informatics Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100228</creationdate><title>Genomic adaptation of prokaryotic organisms at high temperature</title><author>Basak, Surajit ; Mukhopadhyay, Pamela ; Gupta, Sanjib Kumar ; Ghosh, Tapash Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-261f1082f8c97b24d3e44f2f17d515aa9b99fce800b1ea42885c41d8d00df3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Hypothesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Basak, Surajit</creatorcontrib><creatorcontrib>Mukhopadhyay, Pamela</creatorcontrib><creatorcontrib>Gupta, Sanjib Kumar</creatorcontrib><creatorcontrib>Ghosh, Tapash Chandra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basak, Surajit</au><au>Mukhopadhyay, Pamela</au><au>Gupta, Sanjib Kumar</au><au>Ghosh, Tapash Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic adaptation of prokaryotic organisms at high temperature</atitle><jtitle>Bioinformation</jtitle><addtitle>Bioinformation</addtitle><date>2010-02-28</date><risdate>2010</risdate><volume>4</volume><issue>8</issue><spage>352</spage><epage>356</epage><pages>352-356</pages><issn>0973-8894</issn><eissn>0973-2063</eissn><abstract>One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanine and cytosine content between species. However, there has been a long-standing debate regarding the correlations between genomic GC content and optimal growth temperature (Topt). We urged that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting: (i) nucleic acid thermostability and (ii) stability of codon-anticodon interactions. Moreover, in Bacillaceae family we have demonstrated that a higher genomic GC level do not have any role in stabilizing mRNA secondary structure at high growth temperature. Comparative analysis between homologous sequences of thermophilic Thermus thermophilus and mesophilic Deinococcus radiodurans suggests that increased levels of GC contents in the coding sequence corresponding to strand structure of Thermus thermophilus genes have stabilizing effect on the mRNA secondary structure, whereas increased levels of GC contents in coding sequences corresponding to aperiodic structure have destabilizing effect on the mRNA secondary structure. In this perspective, a critical review of thermal adaptation hypothesis is further advocated.</abstract><cop>Singapore</cop><pub>Biomedical Informatics Publishing Group</pub><pmid>20975899</pmid><doi>10.6026/97320630004352</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-8894
ispartof Bioinformation, 2010-02, Vol.4 (8), p.352-356
issn 0973-8894
0973-2063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2951671
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Hypothesis
title Genomic adaptation of prokaryotic organisms at high temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20adaptation%20of%20prokaryotic%20organisms%20at%20high%20temperature&rft.jtitle=Bioinformation&rft.au=Basak,%20Surajit&rft.date=2010-02-28&rft.volume=4&rft.issue=8&rft.spage=352&rft.epage=356&rft.pages=352-356&rft.issn=0973-8894&rft.eissn=0973-2063&rft_id=info:doi/10.6026/97320630004352&rft_dat=%3Cproquest_pubme%3E760209156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760209156&rft_id=info:pmid/20975899&rfr_iscdi=true