ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis

The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopolle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2010-10, Vol.154 (2), p.678-690
Hauptverfasser: Quilichini, Teagen D, Friedmann, Michael C, Samuels, A. Lacey, Douglas, Carl J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 2
container_start_page 678
container_title Plant physiology (Bethesda)
container_volume 154
creator Quilichini, Teagen D
Friedmann, Michael C
Samuels, A. Lacey
Douglas, Carl J
description The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to the surface of developing microspores. Here, we describe ABCG26, a member of the ATP-binding cassette (ABC) transporter superfamily, which is required for pollen exine formation in Arabidopsis (Arabidopsis thaliana). abcg26 mutants are severely reduced in fertility, with most siliques failing to produce seeds by self-fertilization and mature anthers failing to release pollen. Transmission electron microscopy analyses revealed an absence of an exine wall on abcg26-1 mutant microspores. Phenotypic abnormalities in pollen wall formation were first apparent in early uninucleate microspores as a lack of exine formation and sporopollenin deposition. Additionally, the highest levels of ABCG26 mRNA were in the tapetum, during early pollen wall formation, sporopollenin biosynthesis, and sporopollenin deposition. Accumulations resembling the trilamellar lipidic coils in the abcg11 and abcg12 mutants defective in cuticular wax export were observed in the anther locules of abcg26 mutants. A yellow fluorescent protein-ABCG26 protein was localized to the endoplasmic reticulum and plasma membrane. Our results show that ABCG26 plays a critical role in exine formation and pollen development and are consistent with a model by which ABCG26 transports sporopollenin precursors across the tapetum plasma membrane into the locule for polymerization on developing microspore walls.
doi_str_mv 10.1104/pp.110.161968
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2949020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779824</jstor_id><sourcerecordid>20779824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-9ae9ab3509a957cb0f2e0c4dcbd3dfb3068d1e6cec30b54c59fb3b8ec7ce544f3</originalsourceid><addsrcrecordid>eNpVks1v1DAQxS0EosvCkSPgC-KU4o84sS9Iy6otlYqoYHu2HGeyuMraqe1F9L_HqyylnJ4176c3Iz0j9JqSU0pJ_XGaDnpKG6oa-QQtqOCsYqKWT9GCkPImUqoT9CKlW0II5bR-jk4YaTlTLV-g3WpzXX12vnd-i9cmJcgZ8CYan6YQM0R8wRp8mfB3uNu7CD0eQsRfzQj4HGJ2o8v32PgeX4dxBI_PfjtfrBB3JrvgsfN4FU3n-jAll16iZ4MZE7w66hLdnJ9t1l-qq28Xl-vVVWUFk7lSBpTpuCDKKNHajgwMiK172_W8HzpOGtlTaCxYTjpRW6HKsJNgWwuirge-RJ_m3Gnf7aC34HM0o56i25l4r4Nx-n_Hu596G35ppmpFGCkBH44BMdztIWW9c8nCOBoPYZ90K5qmkYrzQlYzaWNIKcLwsIUSfWhIT9NB9dxQ4d8-Pu2B_ltJAd4fAZOsGYdShXXpH1eoRpWWl-jNzN2mHOLjnFZJVhf_3ewPJmizjSXj5gcrP4BQqaQSgv8BRMCuIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756668933</pqid></control><display><type>article</type><title>ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Quilichini, Teagen D ; Friedmann, Michael C ; Samuels, A. Lacey ; Douglas, Carl J</creator><creatorcontrib>Quilichini, Teagen D ; Friedmann, Michael C ; Samuels, A. Lacey ; Douglas, Carl J</creatorcontrib><description>The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to the surface of developing microspores. Here, we describe ABCG26, a member of the ATP-binding cassette (ABC) transporter superfamily, which is required for pollen exine formation in Arabidopsis (Arabidopsis thaliana). abcg26 mutants are severely reduced in fertility, with most siliques failing to produce seeds by self-fertilization and mature anthers failing to release pollen. Transmission electron microscopy analyses revealed an absence of an exine wall on abcg26-1 mutant microspores. Phenotypic abnormalities in pollen wall formation were first apparent in early uninucleate microspores as a lack of exine formation and sporopollenin deposition. Additionally, the highest levels of ABCG26 mRNA were in the tapetum, during early pollen wall formation, sporopollenin biosynthesis, and sporopollenin deposition. Accumulations resembling the trilamellar lipidic coils in the abcg11 and abcg12 mutants defective in cuticular wax export were observed in the anther locules of abcg26 mutants. A yellow fluorescent protein-ABCG26 protein was localized to the endoplasmic reticulum and plasma membrane. Our results show that ABCG26 plays a critical role in exine formation and pollen development and are consistent with a model by which ABCG26 transports sporopollenin precursors across the tapetum plasma membrane into the locule for polymerization on developing microspore walls.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.110.161968</identifier><identifier>PMID: 20732973</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Anthers ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ATP binding cassette transporters ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES ; Biological and medical sciences ; Biopolymers - metabolism ; Biosynthesis ; Carotenoids - metabolism ; Developmental biology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genetic Complementation Test ; Male fertility ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Microspores ; Microsporocytes ; Mutation ; Plant physiology and development ; Plants ; Pollen ; Pollen - genetics ; Pollen - growth &amp; development ; Pollen - ultrastructure ; Protoplasts ; RNA, Plant - genetics</subject><ispartof>Plant physiology (Bethesda), 2010-10, Vol.154 (2), p.678-690</ispartof><rights>2010 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2010 American Society of Plant Biologists 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-9ae9ab3509a957cb0f2e0c4dcbd3dfb3068d1e6cec30b54c59fb3b8ec7ce544f3</citedby><cites>FETCH-LOGICAL-c528t-9ae9ab3509a957cb0f2e0c4dcbd3dfb3068d1e6cec30b54c59fb3b8ec7ce544f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779824$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779824$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23296915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20732973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quilichini, Teagen D</creatorcontrib><creatorcontrib>Friedmann, Michael C</creatorcontrib><creatorcontrib>Samuels, A. Lacey</creatorcontrib><creatorcontrib>Douglas, Carl J</creatorcontrib><title>ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to the surface of developing microspores. Here, we describe ABCG26, a member of the ATP-binding cassette (ABC) transporter superfamily, which is required for pollen exine formation in Arabidopsis (Arabidopsis thaliana). abcg26 mutants are severely reduced in fertility, with most siliques failing to produce seeds by self-fertilization and mature anthers failing to release pollen. Transmission electron microscopy analyses revealed an absence of an exine wall on abcg26-1 mutant microspores. Phenotypic abnormalities in pollen wall formation were first apparent in early uninucleate microspores as a lack of exine formation and sporopollenin deposition. Additionally, the highest levels of ABCG26 mRNA were in the tapetum, during early pollen wall formation, sporopollenin biosynthesis, and sporopollenin deposition. Accumulations resembling the trilamellar lipidic coils in the abcg11 and abcg12 mutants defective in cuticular wax export were observed in the anther locules of abcg26 mutants. A yellow fluorescent protein-ABCG26 protein was localized to the endoplasmic reticulum and plasma membrane. Our results show that ABCG26 plays a critical role in exine formation and pollen development and are consistent with a model by which ABCG26 transports sporopollenin precursors across the tapetum plasma membrane into the locule for polymerization on developing microspore walls.</description><subject>Anthers</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ATP binding cassette transporters</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</subject><subject>Biological and medical sciences</subject><subject>Biopolymers - metabolism</subject><subject>Biosynthesis</subject><subject>Carotenoids - metabolism</subject><subject>Developmental biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Complementation Test</subject><subject>Male fertility</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microspores</subject><subject>Microsporocytes</subject><subject>Mutation</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Pollen</subject><subject>Pollen - genetics</subject><subject>Pollen - growth &amp; development</subject><subject>Pollen - ultrastructure</subject><subject>Protoplasts</subject><subject>RNA, Plant - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVks1v1DAQxS0EosvCkSPgC-KU4o84sS9Iy6otlYqoYHu2HGeyuMraqe1F9L_HqyylnJ4176c3Iz0j9JqSU0pJ_XGaDnpKG6oa-QQtqOCsYqKWT9GCkPImUqoT9CKlW0II5bR-jk4YaTlTLV-g3WpzXX12vnd-i9cmJcgZ8CYan6YQM0R8wRp8mfB3uNu7CD0eQsRfzQj4HGJ2o8v32PgeX4dxBI_PfjtfrBB3JrvgsfN4FU3n-jAll16iZ4MZE7w66hLdnJ9t1l-qq28Xl-vVVWUFk7lSBpTpuCDKKNHajgwMiK172_W8HzpOGtlTaCxYTjpRW6HKsJNgWwuirge-RJ_m3Gnf7aC34HM0o56i25l4r4Nx-n_Hu596G35ppmpFGCkBH44BMdztIWW9c8nCOBoPYZ90K5qmkYrzQlYzaWNIKcLwsIUSfWhIT9NB9dxQ4d8-Pu2B_ltJAd4fAZOsGYdShXXpH1eoRpWWl-jNzN2mHOLjnFZJVhf_3ewPJmizjSXj5gcrP4BQqaQSgv8BRMCuIQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Quilichini, Teagen D</creator><creator>Friedmann, Michael C</creator><creator>Samuels, A. Lacey</creator><creator>Douglas, Carl J</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis</title><author>Quilichini, Teagen D ; Friedmann, Michael C ; Samuels, A. Lacey ; Douglas, Carl J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-9ae9ab3509a957cb0f2e0c4dcbd3dfb3068d1e6cec30b54c59fb3b8ec7ce544f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anthers</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ATP binding cassette transporters</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</topic><topic>Biological and medical sciences</topic><topic>Biopolymers - metabolism</topic><topic>Biosynthesis</topic><topic>Carotenoids - metabolism</topic><topic>Developmental biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Complementation Test</topic><topic>Male fertility</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microspores</topic><topic>Microsporocytes</topic><topic>Mutation</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Pollen</topic><topic>Pollen - genetics</topic><topic>Pollen - growth &amp; development</topic><topic>Pollen - ultrastructure</topic><topic>Protoplasts</topic><topic>RNA, Plant - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quilichini, Teagen D</creatorcontrib><creatorcontrib>Friedmann, Michael C</creatorcontrib><creatorcontrib>Samuels, A. Lacey</creatorcontrib><creatorcontrib>Douglas, Carl J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quilichini, Teagen D</au><au>Friedmann, Michael C</au><au>Samuels, A. Lacey</au><au>Douglas, Carl J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>154</volume><issue>2</issue><spage>678</spage><epage>690</epage><pages>678-690</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to the surface of developing microspores. Here, we describe ABCG26, a member of the ATP-binding cassette (ABC) transporter superfamily, which is required for pollen exine formation in Arabidopsis (Arabidopsis thaliana). abcg26 mutants are severely reduced in fertility, with most siliques failing to produce seeds by self-fertilization and mature anthers failing to release pollen. Transmission electron microscopy analyses revealed an absence of an exine wall on abcg26-1 mutant microspores. Phenotypic abnormalities in pollen wall formation were first apparent in early uninucleate microspores as a lack of exine formation and sporopollenin deposition. Additionally, the highest levels of ABCG26 mRNA were in the tapetum, during early pollen wall formation, sporopollenin biosynthesis, and sporopollenin deposition. Accumulations resembling the trilamellar lipidic coils in the abcg11 and abcg12 mutants defective in cuticular wax export were observed in the anther locules of abcg26 mutants. A yellow fluorescent protein-ABCG26 protein was localized to the endoplasmic reticulum and plasma membrane. Our results show that ABCG26 plays a critical role in exine formation and pollen development and are consistent with a model by which ABCG26 transports sporopollenin precursors across the tapetum plasma membrane into the locule for polymerization on developing microspore walls.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>20732973</pmid><doi>10.1104/pp.110.161968</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2010-10, Vol.154 (2), p.678-690
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2949020
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Anthers
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
ATP binding cassette transporters
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES
Biological and medical sciences
Biopolymers - metabolism
Biosynthesis
Carotenoids - metabolism
Developmental biology
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genetic Complementation Test
Male fertility
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Microspores
Microsporocytes
Mutation
Plant physiology and development
Plants
Pollen
Pollen - genetics
Pollen - growth & development
Pollen - ultrastructure
Protoplasts
RNA, Plant - genetics
title ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP-Binding%20Cassette%20Transporter%20G26%20Is%20Required%20for%20Male%20Fertility%20and%20Pollen%20Exine%20Formation%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Quilichini,%20Teagen%20D&rft.date=2010-10-01&rft.volume=154&rft.issue=2&rft.spage=678&rft.epage=690&rft.pages=678-690&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.110.161968&rft_dat=%3Cjstor_pubme%3E20779824%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756668933&rft_id=info:pmid/20732973&rft_jstor_id=20779824&rfr_iscdi=true