Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer

Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of epidemiology 2010-10, Vol.20 (10), p.750-758
Hauptverfasser: Meliker, Jaymie R., PhD, Goovaerts, Pierre, PhD, Jacquez, Geoffrey M., PhD, Nriagu, Jerome O., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 10
container_start_page 750
container_title Annals of epidemiology
container_volume 20
creator Meliker, Jaymie R., PhD
Goovaerts, Pierre, PhD
Jacquez, Geoffrey M., PhD
Nriagu, Jerome O., PhD
description Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.
doi_str_mv 10.1016/j.annepidem.2010.06.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2947941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047279710001638</els_id><sourcerecordid>817604638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</originalsourceid><addsrcrecordid>eNqNUk2P0zAQjRCIXRb-AvjGKcV2HDvhsFK3W6BSJQ6w4mi59qS469rBTir6S_i7OHSpgBMnP43fvPl4UxSvCJ4RTPib3Ux5D701sJ9RnKOYzzChj4pL0oiqpHVTP84YM1FS0YqL4llKO4yxaAR9WlxQ3BBeEXZZ_Fh5HWIfohqs36KVN_ZgzahcuYYDOHRr0xDtZhxs8AmFDi2_9yGNEdAyxhCR9Wj5qw0bXNhajeZeuWOC9DajTFb73gG6S5P4PCbwmZJzbqP191PsixogIuUNunHKmIwXymuIz4snnXIJXjy8V8Xdu-XnxYdy_fH9ajFfl7rmZCg5b6mu8jCsadVmwwTjrWloBwI6XQmsFG85A0aVAFUTXbdMibataiMErTtTXRXXJ91-3OzBaPBDVE720e5VPMqgrPz7x9uvchsOkrZMtIxkgdcPAjF8GyENcm-TBueUhzAm2RDBMeNVk5nixNQxpBShO1chWE6uyp08uyonVyXmMruaM1_-2eQ577eNmTA_ESCv6mAhyqQt5D0aG0EP0gT7H0Wu_9HQzma7lLuHI6RdGGO2NkkiE5VYfpqOa7otks-KTPP9BKKnz_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817604638</pqid></control><display><type>article</type><title>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Meliker, Jaymie R., PhD ; Goovaerts, Pierre, PhD ; Jacquez, Geoffrey M., PhD ; Nriagu, Jerome O., PhD</creator><creatorcontrib>Meliker, Jaymie R., PhD ; Goovaerts, Pierre, PhD ; Jacquez, Geoffrey M., PhD ; Nriagu, Jerome O., PhD</creatorcontrib><description>Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.</description><identifier>ISSN: 1047-2797</identifier><identifier>EISSN: 1873-2585</identifier><identifier>DOI: 10.1016/j.annepidem.2010.06.012</identifier><identifier>PMID: 20816314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Arsenic ; Arsenic Poisoning - complications ; Arsenic Poisoning - epidemiology ; Arsenicals ; Arsenicals - analysis ; Confounding Factors (Epidemiology) ; Environmental Exposure ; Environmental Exposure - adverse effects ; Epidemiologic Methods ; Humans ; Internal Medicine ; Michigan - epidemiology ; Middle Aged ; Monte Carlo Method ; Probability ; Residential Mobility ; Risk Assessment ; Sensitivity and Specificity ; Uncertainty ; Urinary Bladder ; Urinary Bladder Neoplasms - chemically induced ; Urinary Bladder Neoplasms - epidemiology ; Water Supply - analysis</subject><ispartof>Annals of epidemiology, 2010-10, Vol.20 (10), p.750-758</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</citedby><cites>FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047279710001638$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20816314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meliker, Jaymie R., PhD</creatorcontrib><creatorcontrib>Goovaerts, Pierre, PhD</creatorcontrib><creatorcontrib>Jacquez, Geoffrey M., PhD</creatorcontrib><creatorcontrib>Nriagu, Jerome O., PhD</creatorcontrib><title>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</title><title>Annals of epidemiology</title><addtitle>Ann Epidemiol</addtitle><description>Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.</description><subject>Age Factors</subject><subject>Arsenic</subject><subject>Arsenic Poisoning - complications</subject><subject>Arsenic Poisoning - epidemiology</subject><subject>Arsenicals</subject><subject>Arsenicals - analysis</subject><subject>Confounding Factors (Epidemiology)</subject><subject>Environmental Exposure</subject><subject>Environmental Exposure - adverse effects</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Michigan - epidemiology</subject><subject>Middle Aged</subject><subject>Monte Carlo Method</subject><subject>Probability</subject><subject>Residential Mobility</subject><subject>Risk Assessment</subject><subject>Sensitivity and Specificity</subject><subject>Uncertainty</subject><subject>Urinary Bladder</subject><subject>Urinary Bladder Neoplasms - chemically induced</subject><subject>Urinary Bladder Neoplasms - epidemiology</subject><subject>Water Supply - analysis</subject><issn>1047-2797</issn><issn>1873-2585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P0zAQjRCIXRb-AvjGKcV2HDvhsFK3W6BSJQ6w4mi59qS469rBTir6S_i7OHSpgBMnP43fvPl4UxSvCJ4RTPib3Ux5D701sJ9RnKOYzzChj4pL0oiqpHVTP84YM1FS0YqL4llKO4yxaAR9WlxQ3BBeEXZZ_Fh5HWIfohqs36KVN_ZgzahcuYYDOHRr0xDtZhxs8AmFDi2_9yGNEdAyxhCR9Wj5qw0bXNhajeZeuWOC9DajTFb73gG6S5P4PCbwmZJzbqP191PsixogIuUNunHKmIwXymuIz4snnXIJXjy8V8Xdu-XnxYdy_fH9ajFfl7rmZCg5b6mu8jCsadVmwwTjrWloBwI6XQmsFG85A0aVAFUTXbdMibataiMErTtTXRXXJ91-3OzBaPBDVE720e5VPMqgrPz7x9uvchsOkrZMtIxkgdcPAjF8GyENcm-TBueUhzAm2RDBMeNVk5nixNQxpBShO1chWE6uyp08uyonVyXmMruaM1_-2eQ577eNmTA_ESCv6mAhyqQt5D0aG0EP0gT7H0Wu_9HQzma7lLuHI6RdGGO2NkkiE5VYfpqOa7otks-KTPP9BKKnz_w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Meliker, Jaymie R., PhD</creator><creator>Goovaerts, Pierre, PhD</creator><creator>Jacquez, Geoffrey M., PhD</creator><creator>Nriagu, Jerome O., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</title><author>Meliker, Jaymie R., PhD ; Goovaerts, Pierre, PhD ; Jacquez, Geoffrey M., PhD ; Nriagu, Jerome O., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age Factors</topic><topic>Arsenic</topic><topic>Arsenic Poisoning - complications</topic><topic>Arsenic Poisoning - epidemiology</topic><topic>Arsenicals</topic><topic>Arsenicals - analysis</topic><topic>Confounding Factors (Epidemiology)</topic><topic>Environmental Exposure</topic><topic>Environmental Exposure - adverse effects</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Michigan - epidemiology</topic><topic>Middle Aged</topic><topic>Monte Carlo Method</topic><topic>Probability</topic><topic>Residential Mobility</topic><topic>Risk Assessment</topic><topic>Sensitivity and Specificity</topic><topic>Uncertainty</topic><topic>Urinary Bladder</topic><topic>Urinary Bladder Neoplasms - chemically induced</topic><topic>Urinary Bladder Neoplasms - epidemiology</topic><topic>Water Supply - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meliker, Jaymie R., PhD</creatorcontrib><creatorcontrib>Goovaerts, Pierre, PhD</creatorcontrib><creatorcontrib>Jacquez, Geoffrey M., PhD</creatorcontrib><creatorcontrib>Nriagu, Jerome O., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meliker, Jaymie R., PhD</au><au>Goovaerts, Pierre, PhD</au><au>Jacquez, Geoffrey M., PhD</au><au>Nriagu, Jerome O., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</atitle><jtitle>Annals of epidemiology</jtitle><addtitle>Ann Epidemiol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>20</volume><issue>10</issue><spage>750</spage><epage>758</epage><pages>750-758</pages><issn>1047-2797</issn><eissn>1873-2585</eissn><abstract>Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20816314</pmid><doi>10.1016/j.annepidem.2010.06.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-2797
ispartof Annals of epidemiology, 2010-10, Vol.20 (10), p.750-758
issn 1047-2797
1873-2585
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2947941
source MEDLINE; Elsevier ScienceDirect Journals
subjects Age Factors
Arsenic
Arsenic Poisoning - complications
Arsenic Poisoning - epidemiology
Arsenicals
Arsenicals - analysis
Confounding Factors (Epidemiology)
Environmental Exposure
Environmental Exposure - adverse effects
Epidemiologic Methods
Humans
Internal Medicine
Michigan - epidemiology
Middle Aged
Monte Carlo Method
Probability
Residential Mobility
Risk Assessment
Sensitivity and Specificity
Uncertainty
Urinary Bladder
Urinary Bladder Neoplasms - chemically induced
Urinary Bladder Neoplasms - epidemiology
Water Supply - analysis
title Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Individual-Level%20Distributions%20of%20Exposure%20Error%20in%20Epidemiologic%20Analyses:%20An%20Example%20Using%20Arsenic%20in%20Drinking%20Water%20and%20Bladder%20Cancer&rft.jtitle=Annals%20of%20epidemiology&rft.au=Meliker,%20Jaymie%20R.,%20PhD&rft.date=2010-10-01&rft.volume=20&rft.issue=10&rft.spage=750&rft.epage=758&rft.pages=750-758&rft.issn=1047-2797&rft.eissn=1873-2585&rft_id=info:doi/10.1016/j.annepidem.2010.06.012&rft_dat=%3Cproquest_pubme%3E817604638%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817604638&rft_id=info:pmid/20816314&rft_els_id=S1047279710001638&rfr_iscdi=true