Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer
Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associat...
Gespeichert in:
Veröffentlicht in: | Annals of epidemiology 2010-10, Vol.20 (10), p.750-758 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 758 |
---|---|
container_issue | 10 |
container_start_page | 750 |
container_title | Annals of epidemiology |
container_volume | 20 |
creator | Meliker, Jaymie R., PhD Goovaerts, Pierre, PhD Jacquez, Geoffrey M., PhD Nriagu, Jerome O., PhD |
description | Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure. |
doi_str_mv | 10.1016/j.annepidem.2010.06.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2947941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047279710001638</els_id><sourcerecordid>817604638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</originalsourceid><addsrcrecordid>eNqNUk2P0zAQjRCIXRb-AvjGKcV2HDvhsFK3W6BSJQ6w4mi59qS469rBTir6S_i7OHSpgBMnP43fvPl4UxSvCJ4RTPib3Ux5D701sJ9RnKOYzzChj4pL0oiqpHVTP84YM1FS0YqL4llKO4yxaAR9WlxQ3BBeEXZZ_Fh5HWIfohqs36KVN_ZgzahcuYYDOHRr0xDtZhxs8AmFDi2_9yGNEdAyxhCR9Wj5qw0bXNhajeZeuWOC9DajTFb73gG6S5P4PCbwmZJzbqP191PsixogIuUNunHKmIwXymuIz4snnXIJXjy8V8Xdu-XnxYdy_fH9ajFfl7rmZCg5b6mu8jCsadVmwwTjrWloBwI6XQmsFG85A0aVAFUTXbdMibataiMErTtTXRXXJ91-3OzBaPBDVE720e5VPMqgrPz7x9uvchsOkrZMtIxkgdcPAjF8GyENcm-TBueUhzAm2RDBMeNVk5nixNQxpBShO1chWE6uyp08uyonVyXmMruaM1_-2eQ577eNmTA_ESCv6mAhyqQt5D0aG0EP0gT7H0Wu_9HQzma7lLuHI6RdGGO2NkkiE5VYfpqOa7otks-KTPP9BKKnz_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817604638</pqid></control><display><type>article</type><title>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Meliker, Jaymie R., PhD ; Goovaerts, Pierre, PhD ; Jacquez, Geoffrey M., PhD ; Nriagu, Jerome O., PhD</creator><creatorcontrib>Meliker, Jaymie R., PhD ; Goovaerts, Pierre, PhD ; Jacquez, Geoffrey M., PhD ; Nriagu, Jerome O., PhD</creatorcontrib><description>Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.</description><identifier>ISSN: 1047-2797</identifier><identifier>EISSN: 1873-2585</identifier><identifier>DOI: 10.1016/j.annepidem.2010.06.012</identifier><identifier>PMID: 20816314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Arsenic ; Arsenic Poisoning - complications ; Arsenic Poisoning - epidemiology ; Arsenicals ; Arsenicals - analysis ; Confounding Factors (Epidemiology) ; Environmental Exposure ; Environmental Exposure - adverse effects ; Epidemiologic Methods ; Humans ; Internal Medicine ; Michigan - epidemiology ; Middle Aged ; Monte Carlo Method ; Probability ; Residential Mobility ; Risk Assessment ; Sensitivity and Specificity ; Uncertainty ; Urinary Bladder ; Urinary Bladder Neoplasms - chemically induced ; Urinary Bladder Neoplasms - epidemiology ; Water Supply - analysis</subject><ispartof>Annals of epidemiology, 2010-10, Vol.20 (10), p.750-758</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</citedby><cites>FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047279710001638$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20816314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meliker, Jaymie R., PhD</creatorcontrib><creatorcontrib>Goovaerts, Pierre, PhD</creatorcontrib><creatorcontrib>Jacquez, Geoffrey M., PhD</creatorcontrib><creatorcontrib>Nriagu, Jerome O., PhD</creatorcontrib><title>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</title><title>Annals of epidemiology</title><addtitle>Ann Epidemiol</addtitle><description>Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.</description><subject>Age Factors</subject><subject>Arsenic</subject><subject>Arsenic Poisoning - complications</subject><subject>Arsenic Poisoning - epidemiology</subject><subject>Arsenicals</subject><subject>Arsenicals - analysis</subject><subject>Confounding Factors (Epidemiology)</subject><subject>Environmental Exposure</subject><subject>Environmental Exposure - adverse effects</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Michigan - epidemiology</subject><subject>Middle Aged</subject><subject>Monte Carlo Method</subject><subject>Probability</subject><subject>Residential Mobility</subject><subject>Risk Assessment</subject><subject>Sensitivity and Specificity</subject><subject>Uncertainty</subject><subject>Urinary Bladder</subject><subject>Urinary Bladder Neoplasms - chemically induced</subject><subject>Urinary Bladder Neoplasms - epidemiology</subject><subject>Water Supply - analysis</subject><issn>1047-2797</issn><issn>1873-2585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P0zAQjRCIXRb-AvjGKcV2HDvhsFK3W6BSJQ6w4mi59qS469rBTir6S_i7OHSpgBMnP43fvPl4UxSvCJ4RTPib3Ux5D701sJ9RnKOYzzChj4pL0oiqpHVTP84YM1FS0YqL4llKO4yxaAR9WlxQ3BBeEXZZ_Fh5HWIfohqs36KVN_ZgzahcuYYDOHRr0xDtZhxs8AmFDi2_9yGNEdAyxhCR9Wj5qw0bXNhajeZeuWOC9DajTFb73gG6S5P4PCbwmZJzbqP191PsixogIuUNunHKmIwXymuIz4snnXIJXjy8V8Xdu-XnxYdy_fH9ajFfl7rmZCg5b6mu8jCsadVmwwTjrWloBwI6XQmsFG85A0aVAFUTXbdMibataiMErTtTXRXXJ91-3OzBaPBDVE720e5VPMqgrPz7x9uvchsOkrZMtIxkgdcPAjF8GyENcm-TBueUhzAm2RDBMeNVk5nixNQxpBShO1chWE6uyp08uyonVyXmMruaM1_-2eQ577eNmTA_ESCv6mAhyqQt5D0aG0EP0gT7H0Wu_9HQzma7lLuHI6RdGGO2NkkiE5VYfpqOa7otks-KTPP9BKKnz_w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Meliker, Jaymie R., PhD</creator><creator>Goovaerts, Pierre, PhD</creator><creator>Jacquez, Geoffrey M., PhD</creator><creator>Nriagu, Jerome O., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</title><author>Meliker, Jaymie R., PhD ; Goovaerts, Pierre, PhD ; Jacquez, Geoffrey M., PhD ; Nriagu, Jerome O., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-6692c3816489abb47469d82fe7efc370aa6964e42a7ea51c594a79935d7725fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age Factors</topic><topic>Arsenic</topic><topic>Arsenic Poisoning - complications</topic><topic>Arsenic Poisoning - epidemiology</topic><topic>Arsenicals</topic><topic>Arsenicals - analysis</topic><topic>Confounding Factors (Epidemiology)</topic><topic>Environmental Exposure</topic><topic>Environmental Exposure - adverse effects</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Michigan - epidemiology</topic><topic>Middle Aged</topic><topic>Monte Carlo Method</topic><topic>Probability</topic><topic>Residential Mobility</topic><topic>Risk Assessment</topic><topic>Sensitivity and Specificity</topic><topic>Uncertainty</topic><topic>Urinary Bladder</topic><topic>Urinary Bladder Neoplasms - chemically induced</topic><topic>Urinary Bladder Neoplasms - epidemiology</topic><topic>Water Supply - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meliker, Jaymie R., PhD</creatorcontrib><creatorcontrib>Goovaerts, Pierre, PhD</creatorcontrib><creatorcontrib>Jacquez, Geoffrey M., PhD</creatorcontrib><creatorcontrib>Nriagu, Jerome O., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meliker, Jaymie R., PhD</au><au>Goovaerts, Pierre, PhD</au><au>Jacquez, Geoffrey M., PhD</au><au>Nriagu, Jerome O., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer</atitle><jtitle>Annals of epidemiology</jtitle><addtitle>Ann Epidemiol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>20</volume><issue>10</issue><spage>750</spage><epage>758</epage><pages>750-758</pages><issn>1047-2797</issn><eissn>1873-2585</eissn><abstract>Purpose Epidemiologic analyses traditionally rely on point estimates of exposure for assessing risk despite exposure error. We present a strategy that produces a range of risk estimates reflecting distributions of individual-level exposure. Methods Quantitative estimates of exposure and its associated error are used to create for each individual a normal distribution of exposure estimates which is then sampled using Monte Carlo simulation. After the exposure estimate is sampled, the relationship between exposure and disease is evaluated; this process is repeated 99 times generating a distribution of risk estimates and confidence intervals. This is demonstrated in a bladder cancer case-control study using individual-level distributions of exposure to arsenic in drinking water. Results Sensitivity analyses indicate similar performance for categorical or continuous exposure estimates, and that increases in exposure error translate into a wider range of risk estimates. Bladder cancer analyses yield a wide range of possible risk estimates, allowing quantification of exposure error in the association between arsenic and bladder cancer, typically ignored in conventional analyses. Conclusions Incorporating distributions of individual-level exposure error results in a more nuanced depiction of epidemiologic findings. This approach can be readily adopted by epidemiologists assuming distributions of individual-level exposure.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20816314</pmid><doi>10.1016/j.annepidem.2010.06.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-2797 |
ispartof | Annals of epidemiology, 2010-10, Vol.20 (10), p.750-758 |
issn | 1047-2797 1873-2585 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2947941 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Age Factors Arsenic Arsenic Poisoning - complications Arsenic Poisoning - epidemiology Arsenicals Arsenicals - analysis Confounding Factors (Epidemiology) Environmental Exposure Environmental Exposure - adverse effects Epidemiologic Methods Humans Internal Medicine Michigan - epidemiology Middle Aged Monte Carlo Method Probability Residential Mobility Risk Assessment Sensitivity and Specificity Uncertainty Urinary Bladder Urinary Bladder Neoplasms - chemically induced Urinary Bladder Neoplasms - epidemiology Water Supply - analysis |
title | Incorporating Individual-Level Distributions of Exposure Error in Epidemiologic Analyses: An Example Using Arsenic in Drinking Water and Bladder Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Individual-Level%20Distributions%20of%20Exposure%20Error%20in%20Epidemiologic%20Analyses:%20An%20Example%20Using%20Arsenic%20in%20Drinking%20Water%20and%20Bladder%20Cancer&rft.jtitle=Annals%20of%20epidemiology&rft.au=Meliker,%20Jaymie%20R.,%20PhD&rft.date=2010-10-01&rft.volume=20&rft.issue=10&rft.spage=750&rft.epage=758&rft.pages=750-758&rft.issn=1047-2797&rft.eissn=1873-2585&rft_id=info:doi/10.1016/j.annepidem.2010.06.012&rft_dat=%3Cproquest_pubme%3E817604638%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817604638&rft_id=info:pmid/20816314&rft_els_id=S1047279710001638&rfr_iscdi=true |