Reduced sample sizes for atrophy outcomes in Alzheimer's disease trials: baseline adjustment
Abstract Cerebral atrophy rate is increasingly used as an outcome measure for Alzheimer's disease (AD) trials. We used the Alzheimer's disease Neuroimaging initiative (ADNI) dataset to assess if adjusting for baseline characteristics can reduce sample sizes. Controls (n = 199), patients wi...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2010-08, Vol.31 (8), p.1452-1462.e2 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Cerebral atrophy rate is increasingly used as an outcome measure for Alzheimer's disease (AD) trials. We used the Alzheimer's disease Neuroimaging initiative (ADNI) dataset to assess if adjusting for baseline characteristics can reduce sample sizes. Controls (n = 199), patients with mild cognitive impairment (MCI) (n = 334) and AD (n = 144) had two MRI scans, 1-year apart; ∼ 55% had baseline CSF tau, p-tau, and Aβ1-42. Whole brain (KN–BSI) and hippocampal (HMAPS-HBSI) atrophy rate, and ventricular expansion (VBSI) were calculated for each group; numbers required to power a placebo-controlled trial were estimated. Sample sizes per arm (80% power, 25% absolute rate reduction) for AD were (95% CI): brain atrophy = 81 (64,109), hippocampal atrophy = 88 (68,119), ventricular expansion = 118 (92,157); and for MCI: brain atrophy = 149 (122,188), hippocampal atrophy = 201 (160,262), ventricular expansion = 234 (191,295). To detect a 25% reduction relative to normal aging required increased sample sizes ∼ 3-fold (AD), and ∼ 5-fold (MCI). Disease severity and Aβ1-42 contributed significantly to atrophy rate variability. Adjusting for 11 predefined covariates reduced sample sizes by up to 30%. Treatment trials in AD should consider the effects of normal aging; adjusting for baseline characteristics can significantly reduce required sample sizes. |
---|---|
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2010.04.011 |