Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations
The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable stat...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-10, Vol.285 (40), p.30752-30758 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30758 |
---|---|
container_issue | 40 |
container_start_page | 30752 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Yamasaki, Masayuki Sendall, Timothy J. Harris, Laura E. Lewis, Giles M.W. Huntington, James A. |
description | The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap. |
doi_str_mv | 10.1074/jbc.M110.156042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819889664</els_id><sourcerecordid>755400474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotuFMzfwjVNafybxBQmtoCDtCsQWxM1ynHHXVRJv7exKy1-PQ0oFB4QvljU_v3kzD6EXlFxQUonL28ZebOj0kiUR7BFaUFLzgkv6_TFaEMJooZisz9B5SrckH6HoU3TGSFlWNeML9G0dwr7Y7gBGvAG7M4NPPQ4ObyHu_YA_h-7UQ_Q_zOjDgK8hjdDi5oS_gLGjPwJewTBCxJMO3hzGX1x6hp440yV4fn8v0fb9u-vVh2L96erj6u26sLIUY6FkK1WVrVesKpWizDHDKaVglRG1o3XTVi01yihCG6EEdaQl3IGrWsU5X6I3s-r-0PTQ2uwkmk7vo-9NPOlgvP67MvidvglHzZSQslRZ4PW9QAx3hzyb7n2y0HVmgHBIWkkhK8FF-V-yklLk7WZ4iS5n0saQUgT34IcSPYWmc2h6Ck3PoeUfL_8c44H_nVIGXs2AM0Gbm-iT_rplhHJCa8WInJqqmYC87KOHqJP1MFhofQQ76jb4f7b_CQmyr5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755400474</pqid></control><display><type>article</type><title>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yamasaki, Masayuki ; Sendall, Timothy J. ; Harris, Laura E. ; Lewis, Giles M.W. ; Huntington, James A.</creator><creatorcontrib>Yamasaki, Masayuki ; Sendall, Timothy J. ; Harris, Laura E. ; Lewis, Giles M.W. ; Huntington, James A.</creatorcontrib><description>The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.156042</identifier><identifier>PMID: 20667823</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>a1-antitrypsin ; alpha 1-Antitrypsin - chemistry ; alpha 1-Antitrypsin - genetics ; Animals ; Aspartic acid ; Chlorocebus aethiops ; Conformation ; Crystal Structure ; Domain Swap ; Endoplasmic reticulum ; Guanidine ; Heat ; Humans ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Inhibitor ; Models, Chemical ; Mutation, Missense ; Point mutation ; Polymerization ; Protease Inhibitor ; Protein Conformation ; Protein Domains ; Protein Folding ; Protein Multimerization ; Protein Structure and Folding ; Protein Structure, Secondary ; Proteinase ; Serpin ; serpins</subject><ispartof>The Journal of biological chemistry, 2010-10, Vol.285 (40), p.30752-30758</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</citedby><cites>FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945569/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945569/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20667823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamasaki, Masayuki</creatorcontrib><creatorcontrib>Sendall, Timothy J.</creatorcontrib><creatorcontrib>Harris, Laura E.</creatorcontrib><creatorcontrib>Lewis, Giles M.W.</creatorcontrib><creatorcontrib>Huntington, James A.</creatorcontrib><title>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.</description><subject>a1-antitrypsin</subject><subject>alpha 1-Antitrypsin - chemistry</subject><subject>alpha 1-Antitrypsin - genetics</subject><subject>Animals</subject><subject>Aspartic acid</subject><subject>Chlorocebus aethiops</subject><subject>Conformation</subject><subject>Crystal Structure</subject><subject>Domain Swap</subject><subject>Endoplasmic reticulum</subject><subject>Guanidine</subject><subject>Heat</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Inhibitor</subject><subject>Models, Chemical</subject><subject>Mutation, Missense</subject><subject>Point mutation</subject><subject>Polymerization</subject><subject>Protease Inhibitor</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteinase</subject><subject>Serpin</subject><subject>serpins</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotuFMzfwjVNafybxBQmtoCDtCsQWxM1ynHHXVRJv7exKy1-PQ0oFB4QvljU_v3kzD6EXlFxQUonL28ZebOj0kiUR7BFaUFLzgkv6_TFaEMJooZisz9B5SrckH6HoU3TGSFlWNeML9G0dwr7Y7gBGvAG7M4NPPQ4ObyHu_YA_h-7UQ_Q_zOjDgK8hjdDi5oS_gLGjPwJewTBCxJMO3hzGX1x6hp440yV4fn8v0fb9u-vVh2L96erj6u26sLIUY6FkK1WVrVesKpWizDHDKaVglRG1o3XTVi01yihCG6EEdaQl3IGrWsU5X6I3s-r-0PTQ2uwkmk7vo-9NPOlgvP67MvidvglHzZSQslRZ4PW9QAx3hzyb7n2y0HVmgHBIWkkhK8FF-V-yklLk7WZ4iS5n0saQUgT34IcSPYWmc2h6Ck3PoeUfL_8c44H_nVIGXs2AM0Gbm-iT_rplhHJCa8WInJqqmYC87KOHqJP1MFhofQQ76jb4f7b_CQmyr5w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Yamasaki, Masayuki</creator><creator>Sendall, Timothy J.</creator><creator>Harris, Laura E.</creator><creator>Lewis, Giles M.W.</creator><creator>Huntington, James A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</title><author>Yamasaki, Masayuki ; Sendall, Timothy J. ; Harris, Laura E. ; Lewis, Giles M.W. ; Huntington, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>a1-antitrypsin</topic><topic>alpha 1-Antitrypsin - chemistry</topic><topic>alpha 1-Antitrypsin - genetics</topic><topic>Animals</topic><topic>Aspartic acid</topic><topic>Chlorocebus aethiops</topic><topic>Conformation</topic><topic>Crystal Structure</topic><topic>Domain Swap</topic><topic>Endoplasmic reticulum</topic><topic>Guanidine</topic><topic>Heat</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Inhibitor</topic><topic>Models, Chemical</topic><topic>Mutation, Missense</topic><topic>Point mutation</topic><topic>Polymerization</topic><topic>Protease Inhibitor</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteinase</topic><topic>Serpin</topic><topic>serpins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, Masayuki</creatorcontrib><creatorcontrib>Sendall, Timothy J.</creatorcontrib><creatorcontrib>Harris, Laura E.</creatorcontrib><creatorcontrib>Lewis, Giles M.W.</creatorcontrib><creatorcontrib>Huntington, James A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, Masayuki</au><au>Sendall, Timothy J.</au><au>Harris, Laura E.</au><au>Lewis, Giles M.W.</au><au>Huntington, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>285</volume><issue>40</issue><spage>30752</spage><epage>30758</epage><pages>30752-30758</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20667823</pmid><doi>10.1074/jbc.M110.156042</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-10, Vol.285 (40), p.30752-30758 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945569 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | a1-antitrypsin alpha 1-Antitrypsin - chemistry alpha 1-Antitrypsin - genetics Animals Aspartic acid Chlorocebus aethiops Conformation Crystal Structure Domain Swap Endoplasmic reticulum Guanidine Heat Humans Hydrophobic and Hydrophilic Interactions Hydrophobicity Inhibitor Models, Chemical Mutation, Missense Point mutation Polymerization Protease Inhibitor Protein Conformation Protein Domains Protein Folding Protein Multimerization Protein Structure and Folding Protein Structure, Secondary Proteinase Serpin serpins |
title | Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loop-Sheet%20Mechanism%20of%20Serpin%20Polymerization%20Tested%20by%20Reactive%20Center%20Loop%20Mutations&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yamasaki,%20Masayuki&rft.date=2010-10-01&rft.volume=285&rft.issue=40&rft.spage=30752&rft.epage=30758&rft.pages=30752-30758&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.156042&rft_dat=%3Cproquest_pubme%3E755400474%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755400474&rft_id=info:pmid/20667823&rft_els_id=S0021925819889664&rfr_iscdi=true |