Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations

The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-10, Vol.285 (40), p.30752-30758
Hauptverfasser: Yamasaki, Masayuki, Sendall, Timothy J., Harris, Laura E., Lewis, Giles M.W., Huntington, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30758
container_issue 40
container_start_page 30752
container_title The Journal of biological chemistry
container_volume 285
creator Yamasaki, Masayuki
Sendall, Timothy J.
Harris, Laura E.
Lewis, Giles M.W.
Huntington, James A.
description The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.
doi_str_mv 10.1074/jbc.M110.156042
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819889664</els_id><sourcerecordid>755400474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotuFMzfwjVNafybxBQmtoCDtCsQWxM1ynHHXVRJv7exKy1-PQ0oFB4QvljU_v3kzD6EXlFxQUonL28ZebOj0kiUR7BFaUFLzgkv6_TFaEMJooZisz9B5SrckH6HoU3TGSFlWNeML9G0dwr7Y7gBGvAG7M4NPPQ4ObyHu_YA_h-7UQ_Q_zOjDgK8hjdDi5oS_gLGjPwJewTBCxJMO3hzGX1x6hp440yV4fn8v0fb9u-vVh2L96erj6u26sLIUY6FkK1WVrVesKpWizDHDKaVglRG1o3XTVi01yihCG6EEdaQl3IGrWsU5X6I3s-r-0PTQ2uwkmk7vo-9NPOlgvP67MvidvglHzZSQslRZ4PW9QAx3hzyb7n2y0HVmgHBIWkkhK8FF-V-yklLk7WZ4iS5n0saQUgT34IcSPYWmc2h6Ck3PoeUfL_8c44H_nVIGXs2AM0Gbm-iT_rplhHJCa8WInJqqmYC87KOHqJP1MFhofQQ76jb4f7b_CQmyr5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755400474</pqid></control><display><type>article</type><title>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yamasaki, Masayuki ; Sendall, Timothy J. ; Harris, Laura E. ; Lewis, Giles M.W. ; Huntington, James A.</creator><creatorcontrib>Yamasaki, Masayuki ; Sendall, Timothy J. ; Harris, Laura E. ; Lewis, Giles M.W. ; Huntington, James A.</creatorcontrib><description>The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.156042</identifier><identifier>PMID: 20667823</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>a1-antitrypsin ; alpha 1-Antitrypsin - chemistry ; alpha 1-Antitrypsin - genetics ; Animals ; Aspartic acid ; Chlorocebus aethiops ; Conformation ; Crystal Structure ; Domain Swap ; Endoplasmic reticulum ; Guanidine ; Heat ; Humans ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Inhibitor ; Models, Chemical ; Mutation, Missense ; Point mutation ; Polymerization ; Protease Inhibitor ; Protein Conformation ; Protein Domains ; Protein Folding ; Protein Multimerization ; Protein Structure and Folding ; Protein Structure, Secondary ; Proteinase ; Serpin ; serpins</subject><ispartof>The Journal of biological chemistry, 2010-10, Vol.285 (40), p.30752-30758</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</citedby><cites>FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945569/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945569/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20667823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamasaki, Masayuki</creatorcontrib><creatorcontrib>Sendall, Timothy J.</creatorcontrib><creatorcontrib>Harris, Laura E.</creatorcontrib><creatorcontrib>Lewis, Giles M.W.</creatorcontrib><creatorcontrib>Huntington, James A.</creatorcontrib><title>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.</description><subject>a1-antitrypsin</subject><subject>alpha 1-Antitrypsin - chemistry</subject><subject>alpha 1-Antitrypsin - genetics</subject><subject>Animals</subject><subject>Aspartic acid</subject><subject>Chlorocebus aethiops</subject><subject>Conformation</subject><subject>Crystal Structure</subject><subject>Domain Swap</subject><subject>Endoplasmic reticulum</subject><subject>Guanidine</subject><subject>Heat</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Inhibitor</subject><subject>Models, Chemical</subject><subject>Mutation, Missense</subject><subject>Point mutation</subject><subject>Polymerization</subject><subject>Protease Inhibitor</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteinase</subject><subject>Serpin</subject><subject>serpins</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotuFMzfwjVNafybxBQmtoCDtCsQWxM1ynHHXVRJv7exKy1-PQ0oFB4QvljU_v3kzD6EXlFxQUonL28ZebOj0kiUR7BFaUFLzgkv6_TFaEMJooZisz9B5SrckH6HoU3TGSFlWNeML9G0dwr7Y7gBGvAG7M4NPPQ4ObyHu_YA_h-7UQ_Q_zOjDgK8hjdDi5oS_gLGjPwJewTBCxJMO3hzGX1x6hp440yV4fn8v0fb9u-vVh2L96erj6u26sLIUY6FkK1WVrVesKpWizDHDKaVglRG1o3XTVi01yihCG6EEdaQl3IGrWsU5X6I3s-r-0PTQ2uwkmk7vo-9NPOlgvP67MvidvglHzZSQslRZ4PW9QAx3hzyb7n2y0HVmgHBIWkkhK8FF-V-yklLk7WZ4iS5n0saQUgT34IcSPYWmc2h6Ck3PoeUfL_8c44H_nVIGXs2AM0Gbm-iT_rplhHJCa8WInJqqmYC87KOHqJP1MFhofQQ76jb4f7b_CQmyr5w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Yamasaki, Masayuki</creator><creator>Sendall, Timothy J.</creator><creator>Harris, Laura E.</creator><creator>Lewis, Giles M.W.</creator><creator>Huntington, James A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</title><author>Yamasaki, Masayuki ; Sendall, Timothy J. ; Harris, Laura E. ; Lewis, Giles M.W. ; Huntington, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-95d59756072769912f2a3111ec9a48f18bd7d1a9a901b4941f0d03fef7d9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>a1-antitrypsin</topic><topic>alpha 1-Antitrypsin - chemistry</topic><topic>alpha 1-Antitrypsin - genetics</topic><topic>Animals</topic><topic>Aspartic acid</topic><topic>Chlorocebus aethiops</topic><topic>Conformation</topic><topic>Crystal Structure</topic><topic>Domain Swap</topic><topic>Endoplasmic reticulum</topic><topic>Guanidine</topic><topic>Heat</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Inhibitor</topic><topic>Models, Chemical</topic><topic>Mutation, Missense</topic><topic>Point mutation</topic><topic>Polymerization</topic><topic>Protease Inhibitor</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteinase</topic><topic>Serpin</topic><topic>serpins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, Masayuki</creatorcontrib><creatorcontrib>Sendall, Timothy J.</creatorcontrib><creatorcontrib>Harris, Laura E.</creatorcontrib><creatorcontrib>Lewis, Giles M.W.</creatorcontrib><creatorcontrib>Huntington, James A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, Masayuki</au><au>Sendall, Timothy J.</au><au>Harris, Laura E.</au><au>Lewis, Giles M.W.</au><au>Huntington, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>285</volume><issue>40</issue><spage>30752</spage><epage>30758</epage><pages>30752-30758</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20667823</pmid><doi>10.1074/jbc.M110.156042</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-10, Vol.285 (40), p.30752-30758
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945569
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects a1-antitrypsin
alpha 1-Antitrypsin - chemistry
alpha 1-Antitrypsin - genetics
Animals
Aspartic acid
Chlorocebus aethiops
Conformation
Crystal Structure
Domain Swap
Endoplasmic reticulum
Guanidine
Heat
Humans
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Inhibitor
Models, Chemical
Mutation, Missense
Point mutation
Polymerization
Protease Inhibitor
Protein Conformation
Protein Domains
Protein Folding
Protein Multimerization
Protein Structure and Folding
Protein Structure, Secondary
Proteinase
Serpin
serpins
title Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loop-Sheet%20Mechanism%20of%20Serpin%20Polymerization%20Tested%20by%20Reactive%20Center%20Loop%20Mutations&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yamasaki,%20Masayuki&rft.date=2010-10-01&rft.volume=285&rft.issue=40&rft.spage=30752&rft.epage=30758&rft.pages=30752-30758&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.156042&rft_dat=%3Cproquest_pubme%3E755400474%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755400474&rft_id=info:pmid/20667823&rft_els_id=S0021925819889664&rfr_iscdi=true