Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase

The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2010-11, Vol.78 (14), p.2961-2972
Hauptverfasser: Capece, Luciana, Arrar, Mehrnoosh, Roitberg, Adrian E., Yeh, Syun-Ru, Marti, Marcelo A., Estrin, Dario A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2972
container_issue 14
container_start_page 2961
container_title Proteins, structure, function, and bioinformatics
container_volume 78
creator Capece, Luciana
Arrar, Mehrnoosh
Roitberg, Adrian E.
Yeh, Syun-Ru
Marti, Marcelo A.
Estrin, Dario A.
description The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small‐molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum‐classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O2) and (b) the substrate stereo‐specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo‐specificity of TDO is achieved by the perfect fit of L‐Trp, but not D‐Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L/D‐Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO‐selective inhibitors. Proteins 2010; © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.22819
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2939288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755180252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5239-f32eda081ff6934df302c558dcdbbed8221909c4fba8e3d1451caf591aa03c8c3</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS1UBCHthgeoZlcJMeCfOGNvkFBUoFIEEaVlaXnsa3CZjAd70jJvX9NABJuuvDjnfj73HoT2CT4iGNPjLob-iFJB5BYaESyrEhM2-YBGWIiqZFzwXbSX0i-M8VSy6Q7apbginAgxQj-_r-rUR91DkXqIEMrUgfHOG98PhW-LPg5dH7p73RbWh6fhDlqdoNCtzaoNDeilb6Ggh6x8o39E2043CT69vGP04-zrzeyinF-df5udzkvDKZOlYxSsxoI4l5NNrGOYGs6FNbauwQpKicTSTFytBTBLJpwY7bgkWmNmhGFjdLLmdqt6CdZAm3dpVBf9UsdBBe3Ve6X19-ou_FZUMkmFyIAvL4AYHleQerX0yUDT6BbCKqmK5zthmtOO0cHaaWJIKYLb_EKweu5BPfeg_vWQzZ_f5tpYXw-fDWRt-OMbGP6DUovrq5tXaLme8bmqp82Mjg9qWrGKq9vLc7WYn82uF4sLJdhf0dOmFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755180252</pqid></control><display><type>article</type><title>Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Capece, Luciana ; Arrar, Mehrnoosh ; Roitberg, Adrian E. ; Yeh, Syun-Ru ; Marti, Marcelo A. ; Estrin, Dario A.</creator><creatorcontrib>Capece, Luciana ; Arrar, Mehrnoosh ; Roitberg, Adrian E. ; Yeh, Syun-Ru ; Marti, Marcelo A. ; Estrin, Dario A.</creatorcontrib><description>The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small‐molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum‐classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O2) and (b) the substrate stereo‐specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo‐specificity of TDO is achieved by the perfect fit of L‐Trp, but not D‐Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L/D‐Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO‐selective inhibitors. Proteins 2010; © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.22819</identifier><identifier>PMID: 20715188</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>affinity ; Binding Sites ; Catalysis ; dioxygenase ; Humans ; IDO ; Indoleamine-Pyrrole 2,3,-Dioxygenase - chemistry ; Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism ; inhibitors ; Models, Molecular ; molecular dynamics ; Molecular Dynamics Simulation ; oxygen ; Protein Conformation ; Stereoisomerism ; structure ; Substrate Specificity ; TDO ; Tryptophan - chemistry ; Tryptophan - metabolism ; Tryptophan Oxygenase - chemistry ; Tryptophan Oxygenase - metabolism</subject><ispartof>Proteins, structure, function, and bioinformatics, 2010-11, Vol.78 (14), p.2961-2972</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5239-f32eda081ff6934df302c558dcdbbed8221909c4fba8e3d1451caf591aa03c8c3</citedby><cites>FETCH-LOGICAL-c5239-f32eda081ff6934df302c558dcdbbed8221909c4fba8e3d1451caf591aa03c8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.22819$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.22819$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20715188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Capece, Luciana</creatorcontrib><creatorcontrib>Arrar, Mehrnoosh</creatorcontrib><creatorcontrib>Roitberg, Adrian E.</creatorcontrib><creatorcontrib>Yeh, Syun-Ru</creatorcontrib><creatorcontrib>Marti, Marcelo A.</creatorcontrib><creatorcontrib>Estrin, Dario A.</creatorcontrib><title>Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small‐molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum‐classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O2) and (b) the substrate stereo‐specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo‐specificity of TDO is achieved by the perfect fit of L‐Trp, but not D‐Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L/D‐Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO‐selective inhibitors. Proteins 2010; © 2010 Wiley‐Liss, Inc.</description><subject>affinity</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>dioxygenase</subject><subject>Humans</subject><subject>IDO</subject><subject>Indoleamine-Pyrrole 2,3,-Dioxygenase - chemistry</subject><subject>Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism</subject><subject>inhibitors</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>oxygen</subject><subject>Protein Conformation</subject><subject>Stereoisomerism</subject><subject>structure</subject><subject>Substrate Specificity</subject><subject>TDO</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><subject>Tryptophan Oxygenase - chemistry</subject><subject>Tryptophan Oxygenase - metabolism</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1OGzEUhS1UBCHthgeoZlcJMeCfOGNvkFBUoFIEEaVlaXnsa3CZjAd70jJvX9NABJuuvDjnfj73HoT2CT4iGNPjLob-iFJB5BYaESyrEhM2-YBGWIiqZFzwXbSX0i-M8VSy6Q7apbginAgxQj-_r-rUR91DkXqIEMrUgfHOG98PhW-LPg5dH7p73RbWh6fhDlqdoNCtzaoNDeilb6Ggh6x8o39E2043CT69vGP04-zrzeyinF-df5udzkvDKZOlYxSsxoI4l5NNrGOYGs6FNbauwQpKicTSTFytBTBLJpwY7bgkWmNmhGFjdLLmdqt6CdZAm3dpVBf9UsdBBe3Ve6X19-ou_FZUMkmFyIAvL4AYHleQerX0yUDT6BbCKqmK5zthmtOO0cHaaWJIKYLb_EKweu5BPfeg_vWQzZ_f5tpYXw-fDWRt-OMbGP6DUovrq5tXaLme8bmqp82Mjg9qWrGKq9vLc7WYn82uF4sLJdhf0dOmFA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Capece, Luciana</creator><creator>Arrar, Mehrnoosh</creator><creator>Roitberg, Adrian E.</creator><creator>Yeh, Syun-Ru</creator><creator>Marti, Marcelo A.</creator><creator>Estrin, Dario A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101101</creationdate><title>Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase</title><author>Capece, Luciana ; Arrar, Mehrnoosh ; Roitberg, Adrian E. ; Yeh, Syun-Ru ; Marti, Marcelo A. ; Estrin, Dario A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5239-f32eda081ff6934df302c558dcdbbed8221909c4fba8e3d1451caf591aa03c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>affinity</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>dioxygenase</topic><topic>Humans</topic><topic>IDO</topic><topic>Indoleamine-Pyrrole 2,3,-Dioxygenase - chemistry</topic><topic>Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism</topic><topic>inhibitors</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>oxygen</topic><topic>Protein Conformation</topic><topic>Stereoisomerism</topic><topic>structure</topic><topic>Substrate Specificity</topic><topic>TDO</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><topic>Tryptophan Oxygenase - chemistry</topic><topic>Tryptophan Oxygenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capece, Luciana</creatorcontrib><creatorcontrib>Arrar, Mehrnoosh</creatorcontrib><creatorcontrib>Roitberg, Adrian E.</creatorcontrib><creatorcontrib>Yeh, Syun-Ru</creatorcontrib><creatorcontrib>Marti, Marcelo A.</creatorcontrib><creatorcontrib>Estrin, Dario A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capece, Luciana</au><au>Arrar, Mehrnoosh</au><au>Roitberg, Adrian E.</au><au>Yeh, Syun-Ru</au><au>Marti, Marcelo A.</au><au>Estrin, Dario A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>78</volume><issue>14</issue><spage>2961</spage><epage>2972</epage><pages>2961-2972</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small‐molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum‐classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O2) and (b) the substrate stereo‐specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo‐specificity of TDO is achieved by the perfect fit of L‐Trp, but not D‐Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L/D‐Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO‐selective inhibitors. Proteins 2010; © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20715188</pmid><doi>10.1002/prot.22819</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2010-11, Vol.78 (14), p.2961-2972
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2939288
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects affinity
Binding Sites
Catalysis
dioxygenase
Humans
IDO
Indoleamine-Pyrrole 2,3,-Dioxygenase - chemistry
Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism
inhibitors
Models, Molecular
molecular dynamics
Molecular Dynamics Simulation
oxygen
Protein Conformation
Stereoisomerism
structure
Substrate Specificity
TDO
Tryptophan - chemistry
Tryptophan - metabolism
Tryptophan Oxygenase - chemistry
Tryptophan Oxygenase - metabolism
title Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20stereo-specificity%20in%20tryptophan%20dioxygenase%20and%20indoleamine%202,3-dioxygenase&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Capece,%20Luciana&rft.date=2010-11-01&rft.volume=78&rft.issue=14&rft.spage=2961&rft.epage=2972&rft.pages=2961-2972&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.22819&rft_dat=%3Cproquest_pubme%3E755180252%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755180252&rft_id=info:pmid/20715188&rfr_iscdi=true