Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides

Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2010-10, Vol.88 (3), p.771-779
Hauptverfasser: Thakur, Chandar S, Brown, Margaret E, Sama, Jacob N, Jackson, Melantha E, Dayie, T. Kwaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 3
container_start_page 771
container_title Applied microbiology and biotechnology
container_volume 88
creator Thakur, Chandar S
Brown, Margaret E
Sama, Jacob N
Jackson, Melantha E
Dayie, T. Kwaku
description Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtaining labeled nucleotides is to harvest these nucleotides from bacteria grown in defined minimal media supplemented with ¹⁵NH₄Cl and various carbon sources. Given the high cost of carbon precursors required for labeling nucleic acids for NMR studies, it becomes important to evaluate the optimal growth for commonly used strains under standard minimal media conditions. Such information is lacking. In this study, we characterize the growth for Escherichia coli strains K12, K10zwf, and DL323 in three minimal media with isotopic-labeled carbon sources of acetate, glycerol, and glycerol combined with formate. Of the three media, the LeMaster-Richards and the Studier media outperform the commonly used M9 media and both support optimal growth of E. coli for the production of nucleotides. However, the growth of all three E. coli strains in acetate is reduced almost twofold compared to growth in glycerol. Analysis of the metabolic pathway and previous gene array studies help to explain this differential growth in glycerol and acetate. These studies should benefit efforts to make selective ¹³C-¹⁵N isotopic-labeled nucleotides for synthesizing biologically important RNAs.
doi_str_mv 10.1007/s00253-010-2813-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2938442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755179529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-207eb29ba56556f3bba2118f13b4711f0185d66512c88b0a8164aca233973b4b3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhi0EosvCA3ABCwlxSvHYseNckFBVWqRKHKBny3GcrSuvHeyEat-Ax8bbLG3hgDhZsr_5Pf_Mj9BLIMdASPM-E0I5qwiQikpg1e4RWkHNaEUE1I_RikDDq4a38gg9y_maEKBSiKfoiJKGEc7YCv08S_FmusJxwDfO99NutFiHHm_nSYcJnx5jE73DeUrahYxdwFsX3FZ7vLW903iICcdxur0ZU-xnM7kY9nJhNt46g7Vxfb7lxmRHnVzYYK87622_MHFyvc3P0ZNB-2xfHM41uvx0-u3kvLr4cvb55ONFZTivp6p0bjvadpoLzsXAuk5TADkA6-oGYCAgeS8EB2qk7IiWIGptNGWsbQrSsTX6sOiOc1csGBuKNa_GVCyknYraqT9fgrtSm_hD0ZbJuqZF4N1BIMXvs82T2rpsrPc62DhnJbloBCX_QTacQ9PyIrxGb_4ir-OcQplDgYDTmjEoECyQSTHnZIe7poGofR7UkgdV8qD2eVC7UvPqodu7it8BKMDbA6Cz0X5IOhiX7zlGBW9AFo4uXB73G7TpvsN__f56KRp0VHqTivDlV0qAlS3JVjLJfgFssNhu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751524331</pqid></control><display><type>article</type><title>Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Thakur, Chandar S ; Brown, Margaret E ; Sama, Jacob N ; Jackson, Melantha E ; Dayie, T. Kwaku</creator><creatorcontrib>Thakur, Chandar S ; Brown, Margaret E ; Sama, Jacob N ; Jackson, Melantha E ; Dayie, T. Kwaku</creatorcontrib><description>Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtaining labeled nucleotides is to harvest these nucleotides from bacteria grown in defined minimal media supplemented with ¹⁵NH₄Cl and various carbon sources. Given the high cost of carbon precursors required for labeling nucleic acids for NMR studies, it becomes important to evaluate the optimal growth for commonly used strains under standard minimal media conditions. Such information is lacking. In this study, we characterize the growth for Escherichia coli strains K12, K10zwf, and DL323 in three minimal media with isotopic-labeled carbon sources of acetate, glycerol, and glycerol combined with formate. Of the three media, the LeMaster-Richards and the Studier media outperform the commonly used M9 media and both support optimal growth of E. coli for the production of nucleotides. However, the growth of all three E. coli strains in acetate is reduced almost twofold compared to growth in glycerol. Analysis of the metabolic pathway and previous gene array studies help to explain this differential growth in glycerol and acetate. These studies should benefit efforts to make selective ¹³C-¹⁵N isotopic-labeled nucleotides for synthesizing biologically important RNAs.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-010-2813-y</identifier><identifier>PMID: 20730533</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Acetate ; Acetates - metabolism ; Acids ; Analysis ; Bacteria ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; BL21 ; Carbon ; Carbon Isotopes - metabolism ; Carbon sources ; Chemical synthesis ; Culture Media - chemistry ; Dehydrogenases ; DL323 ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Formate ; Formates - metabolism ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glycerol ; Glycerol - metabolism ; Isotope Labeling ; Isotopes ; K10zwf ; K12 ; Life Sciences ; Magnetic Resonance Spectroscopy ; Metabolic Networks and Pathways ; Methods and Protocols ; Microbial Genetics and Genomics ; Microbiology ; Minimal media ; Nitrogen Isotopes - metabolism ; NMR ; Nuclear magnetic resonance ; Nucleic acids ; Nucleotides - biosynthesis ; Ribonucleic acid ; RNA ; RNA - biosynthesis ; RNA polymerase ; Sodium ; Stable isotopes ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2010-10, Vol.88 (3), p.771-779</ispartof><rights>The Author(s) 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-207eb29ba56556f3bba2118f13b4711f0185d66512c88b0a8164aca233973b4b3</citedby><cites>FETCH-LOGICAL-c554t-207eb29ba56556f3bba2118f13b4711f0185d66512c88b0a8164aca233973b4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-010-2813-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-010-2813-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23265718$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20730533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thakur, Chandar S</creatorcontrib><creatorcontrib>Brown, Margaret E</creatorcontrib><creatorcontrib>Sama, Jacob N</creatorcontrib><creatorcontrib>Jackson, Melantha E</creatorcontrib><creatorcontrib>Dayie, T. Kwaku</creatorcontrib><title>Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtaining labeled nucleotides is to harvest these nucleotides from bacteria grown in defined minimal media supplemented with ¹⁵NH₄Cl and various carbon sources. Given the high cost of carbon precursors required for labeling nucleic acids for NMR studies, it becomes important to evaluate the optimal growth for commonly used strains under standard minimal media conditions. Such information is lacking. In this study, we characterize the growth for Escherichia coli strains K12, K10zwf, and DL323 in three minimal media with isotopic-labeled carbon sources of acetate, glycerol, and glycerol combined with formate. Of the three media, the LeMaster-Richards and the Studier media outperform the commonly used M9 media and both support optimal growth of E. coli for the production of nucleotides. However, the growth of all three E. coli strains in acetate is reduced almost twofold compared to growth in glycerol. Analysis of the metabolic pathway and previous gene array studies help to explain this differential growth in glycerol and acetate. These studies should benefit efforts to make selective ¹³C-¹⁵N isotopic-labeled nucleotides for synthesizing biologically important RNAs.</description><subject>Acetate</subject><subject>Acetates - metabolism</subject><subject>Acids</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>BL21</subject><subject>Carbon</subject><subject>Carbon Isotopes - metabolism</subject><subject>Carbon sources</subject><subject>Chemical synthesis</subject><subject>Culture Media - chemistry</subject><subject>Dehydrogenases</subject><subject>DL323</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Formate</subject><subject>Formates - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Isotope Labeling</subject><subject>Isotopes</subject><subject>K10zwf</subject><subject>K12</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolic Networks and Pathways</subject><subject>Methods and Protocols</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Minimal media</subject><subject>Nitrogen Isotopes - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleic acids</subject><subject>Nucleotides - biosynthesis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - biosynthesis</subject><subject>RNA polymerase</subject><subject>Sodium</subject><subject>Stable isotopes</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNksFu1DAQhi0EosvCA3ABCwlxSvHYseNckFBVWqRKHKBny3GcrSuvHeyEat-Ax8bbLG3hgDhZsr_5Pf_Mj9BLIMdASPM-E0I5qwiQikpg1e4RWkHNaEUE1I_RikDDq4a38gg9y_maEKBSiKfoiJKGEc7YCv08S_FmusJxwDfO99NutFiHHm_nSYcJnx5jE73DeUrahYxdwFsX3FZ7vLW903iICcdxur0ZU-xnM7kY9nJhNt46g7Vxfb7lxmRHnVzYYK87622_MHFyvc3P0ZNB-2xfHM41uvx0-u3kvLr4cvb55ONFZTivp6p0bjvadpoLzsXAuk5TADkA6-oGYCAgeS8EB2qk7IiWIGptNGWsbQrSsTX6sOiOc1csGBuKNa_GVCyknYraqT9fgrtSm_hD0ZbJuqZF4N1BIMXvs82T2rpsrPc62DhnJbloBCX_QTacQ9PyIrxGb_4ir-OcQplDgYDTmjEoECyQSTHnZIe7poGofR7UkgdV8qD2eVC7UvPqodu7it8BKMDbA6Cz0X5IOhiX7zlGBW9AFo4uXB73G7TpvsN__f56KRp0VHqTivDlV0qAlS3JVjLJfgFssNhu</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Thakur, Chandar S</creator><creator>Brown, Margaret E</creator><creator>Sama, Jacob N</creator><creator>Jackson, Melantha E</creator><creator>Dayie, T. Kwaku</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7TM</scope><scope>7UA</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides</title><author>Thakur, Chandar S ; Brown, Margaret E ; Sama, Jacob N ; Jackson, Melantha E ; Dayie, T. Kwaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-207eb29ba56556f3bba2118f13b4711f0185d66512c88b0a8164aca233973b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetate</topic><topic>Acetates - metabolism</topic><topic>Acids</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>BL21</topic><topic>Carbon</topic><topic>Carbon Isotopes - metabolism</topic><topic>Carbon sources</topic><topic>Chemical synthesis</topic><topic>Culture Media - chemistry</topic><topic>Dehydrogenases</topic><topic>DL323</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Formate</topic><topic>Formates - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Isotope Labeling</topic><topic>Isotopes</topic><topic>K10zwf</topic><topic>K12</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolic Networks and Pathways</topic><topic>Methods and Protocols</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Minimal media</topic><topic>Nitrogen Isotopes - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleic acids</topic><topic>Nucleotides - biosynthesis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - biosynthesis</topic><topic>RNA polymerase</topic><topic>Sodium</topic><topic>Stable isotopes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakur, Chandar S</creatorcontrib><creatorcontrib>Brown, Margaret E</creatorcontrib><creatorcontrib>Sama, Jacob N</creatorcontrib><creatorcontrib>Jackson, Melantha E</creatorcontrib><creatorcontrib>Dayie, T. Kwaku</creatorcontrib><collection>AGRIS</collection><collection>Springer Nature OA/Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Water Resources Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakur, Chandar S</au><au>Brown, Margaret E</au><au>Sama, Jacob N</au><au>Jackson, Melantha E</au><au>Dayie, T. Kwaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>88</volume><issue>3</issue><spage>771</spage><epage>779</epage><pages>771-779</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtaining labeled nucleotides is to harvest these nucleotides from bacteria grown in defined minimal media supplemented with ¹⁵NH₄Cl and various carbon sources. Given the high cost of carbon precursors required for labeling nucleic acids for NMR studies, it becomes important to evaluate the optimal growth for commonly used strains under standard minimal media conditions. Such information is lacking. In this study, we characterize the growth for Escherichia coli strains K12, K10zwf, and DL323 in three minimal media with isotopic-labeled carbon sources of acetate, glycerol, and glycerol combined with formate. Of the three media, the LeMaster-Richards and the Studier media outperform the commonly used M9 media and both support optimal growth of E. coli for the production of nucleotides. However, the growth of all three E. coli strains in acetate is reduced almost twofold compared to growth in glycerol. Analysis of the metabolic pathway and previous gene array studies help to explain this differential growth in glycerol and acetate. These studies should benefit efforts to make selective ¹³C-¹⁵N isotopic-labeled nucleotides for synthesizing biologically important RNAs.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20730533</pmid><doi>10.1007/s00253-010-2813-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2010-10, Vol.88 (3), p.771-779
issn 0175-7598
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2938442
source MEDLINE; SpringerLink Journals
subjects Acetate
Acetates - metabolism
Acids
Analysis
Bacteria
Biological and medical sciences
Biomedical and Life Sciences
Biotechnology
BL21
Carbon
Carbon Isotopes - metabolism
Carbon sources
Chemical synthesis
Culture Media - chemistry
Dehydrogenases
DL323
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Formate
Formates - metabolism
Fundamental and applied biological sciences. Psychology
Glucose
Glycerol
Glycerol - metabolism
Isotope Labeling
Isotopes
K10zwf
K12
Life Sciences
Magnetic Resonance Spectroscopy
Metabolic Networks and Pathways
Methods and Protocols
Microbial Genetics and Genomics
Microbiology
Minimal media
Nitrogen Isotopes - metabolism
NMR
Nuclear magnetic resonance
Nucleic acids
Nucleotides - biosynthesis
Ribonucleic acid
RNA
RNA - biosynthesis
RNA polymerase
Sodium
Stable isotopes
Studies
title Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20wildtype%20and%20mutant%20E.%20coli%20strains%20in%20minimal%20media%20for%20optimal%20production%20of%20nucleic%20acids%20for%20preparing%20labeled%20nucleotides&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Thakur,%20Chandar%20S&rft.date=2010-10-01&rft.volume=88&rft.issue=3&rft.spage=771&rft.epage=779&rft.pages=771-779&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-010-2813-y&rft_dat=%3Cproquest_pubme%3E755179529%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751524331&rft_id=info:pmid/20730533&rfr_iscdi=true