Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry
Viral capsid assembly, in which viral proteins self-assemble into complexes of well defined architecture, is a fascinating biological process. Although viral structure and assembly processes have been the subject of many excellent structural biology studies in the past, questions still remain regard...
Gespeichert in:
Veröffentlicht in: | Molecular & cellular proteomics 2010-08, Vol.9 (8), p.1742-1751 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1751 |
---|---|
container_issue | 8 |
container_start_page | 1742 |
container_title | Molecular & cellular proteomics |
container_volume | 9 |
creator | Shoemaker, Glen K. van Duijn, Esther Crawford, Sue E. Uetrecht, Charlotte Baclayon, Marian Roos, Wouter H. Wuite, Gijs J.L. Estes, Mary K. Prasad, B. V. Venkataram Heck, Albert J.R. |
description | Viral capsid assembly, in which viral proteins self-assemble into complexes of well defined architecture, is a fascinating biological process. Although viral structure and assembly processes have been the subject of many excellent structural biology studies in the past, questions still remain regarding the intricate mechanisms that underlie viral structure, stability, and assembly. Here we used native mass spectrometry-based techniques to study the structure, stability, and assembly of Norwalk virus-like particles. Although detailed structural information on the fully assembled capsid exists, less information is available on potential capsid (dis)assembly intermediates, largely because of the inherent heterogeneity and complexity of the disassembly pathways. We used native mass spectrometry and atomic force microscopy to investigate the (dis)assembly of the Norwalk virus-like particles as a function of solution pH, ionic strength, and VP1 protein concentration. Native MS analysis at physiological pH revealed the presence of the complete capsid (T = 3) consisting of 180 copies of VP1. The mass of these capsid particles extends over 10 million Da, ranking them among the largest protein complexes ever analyzed by native MS. Although very stable under acidic conditions, the capsid was found to be sensitive to alkaline treatment. At elevated pH, intermediate structures consisting of 2, 4, 6, 18, 40, 60, and 80 copies of VP1 were observed with the VP160 (3.36-MDa) and VP180 (4.48-MDa) species being most abundant. Atomic force microscopy imaging and ion mobility mass spectrometry confirmed the formation of these latter midsize spherical particles at elevated pH. All these VP1 oligomers could be reversely assembled into the original capsid (VP1180). From the MS data collected over a range of experimental conditions, we suggest a disassembly model in which the T = 3 VP1180 particles dissociate into smaller oligomers, predominantly dimers, upon alkaline treatment prior to reassembly into VP160 and VP180 species. |
doi_str_mv | 10.1074/mcp.M900620-MCP200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2938053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620309282</els_id><sourcerecordid>748950598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-e2c15194d1eaea33d4a8c24a9f7975ee89ae3bea964b4fd2a45f5d479edcae5d3</originalsourceid><addsrcrecordid>eNp9kE2P0zAQhi0EoqXwBzig3DhlsR27iSWEVEUsILW7SPtxtSb2BAxJHOy0q_77NUqp4MJpvt55Z_QQ8prRC0ZL8a4348VOUbrmNN_VXzmlT8iSyULmSlTi6Tkv1wvyIsYflHLKSvmcLDgVrOKcL0l95cMDdD-zexf2MdvEiH3THTMYbHYzQeM6Nx2znR_c5AParEkFxJjdjGim4HucwvEledZCF_HVKa7I3eXH2_pzvr3-9KXebHMjOZ1y5IZJpoRlCAhFYQVUhgtQbalKiVgpwKJBUGvRiNZyELKVVpQKrQGUtliRD7PvuG_61MRhCtDpMbgewlF7cPrfyeC-62_-oLkqKiqLZPD2ZBD8rz3GSfcuGuw6GNDvoy5FpSSVqkpKPitN8DEGbM9XGNW_4esEX5_g6xl-Wnrz93_nlT-0k-D9LMBE6eAw6GgcDgatCwmntt79z_8RU06Xqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748950598</pqid></control><display><type>article</type><title>Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shoemaker, Glen K. ; van Duijn, Esther ; Crawford, Sue E. ; Uetrecht, Charlotte ; Baclayon, Marian ; Roos, Wouter H. ; Wuite, Gijs J.L. ; Estes, Mary K. ; Prasad, B. V. Venkataram ; Heck, Albert J.R.</creator><creatorcontrib>Shoemaker, Glen K. ; van Duijn, Esther ; Crawford, Sue E. ; Uetrecht, Charlotte ; Baclayon, Marian ; Roos, Wouter H. ; Wuite, Gijs J.L. ; Estes, Mary K. ; Prasad, B. V. Venkataram ; Heck, Albert J.R.</creatorcontrib><description>Viral capsid assembly, in which viral proteins self-assemble into complexes of well defined architecture, is a fascinating biological process. Although viral structure and assembly processes have been the subject of many excellent structural biology studies in the past, questions still remain regarding the intricate mechanisms that underlie viral structure, stability, and assembly. Here we used native mass spectrometry-based techniques to study the structure, stability, and assembly of Norwalk virus-like particles. Although detailed structural information on the fully assembled capsid exists, less information is available on potential capsid (dis)assembly intermediates, largely because of the inherent heterogeneity and complexity of the disassembly pathways. We used native mass spectrometry and atomic force microscopy to investigate the (dis)assembly of the Norwalk virus-like particles as a function of solution pH, ionic strength, and VP1 protein concentration. Native MS analysis at physiological pH revealed the presence of the complete capsid (T = 3) consisting of 180 copies of VP1. The mass of these capsid particles extends over 10 million Da, ranking them among the largest protein complexes ever analyzed by native MS. Although very stable under acidic conditions, the capsid was found to be sensitive to alkaline treatment. At elevated pH, intermediate structures consisting of 2, 4, 6, 18, 40, 60, and 80 copies of VP1 were observed with the VP160 (3.36-MDa) and VP180 (4.48-MDa) species being most abundant. Atomic force microscopy imaging and ion mobility mass spectrometry confirmed the formation of these latter midsize spherical particles at elevated pH. All these VP1 oligomers could be reversely assembled into the original capsid (VP1180). From the MS data collected over a range of experimental conditions, we suggest a disassembly model in which the T = 3 VP1180 particles dissociate into smaller oligomers, predominantly dimers, upon alkaline treatment prior to reassembly into VP160 and VP180 species.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M900620-MCP200</identifier><identifier>PMID: 20418222</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Capsid - chemistry ; Capsid - ultrastructure ; Microscopy, Atomic Force ; Norwalk virus - physiology ; Norwalk virus - ultrastructure ; Osmolar Concentration ; Particle Size ; Spectrometry, Mass, Electrospray Ionization - methods ; Virus Assembly - physiology</subject><ispartof>Molecular & cellular proteomics, 2010-08, Vol.9 (8), p.1742-1751</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-e2c15194d1eaea33d4a8c24a9f7975ee89ae3bea964b4fd2a45f5d479edcae5d3</citedby><cites>FETCH-LOGICAL-c520t-e2c15194d1eaea33d4a8c24a9f7975ee89ae3bea964b4fd2a45f5d479edcae5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938053/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938053/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20418222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoemaker, Glen K.</creatorcontrib><creatorcontrib>van Duijn, Esther</creatorcontrib><creatorcontrib>Crawford, Sue E.</creatorcontrib><creatorcontrib>Uetrecht, Charlotte</creatorcontrib><creatorcontrib>Baclayon, Marian</creatorcontrib><creatorcontrib>Roos, Wouter H.</creatorcontrib><creatorcontrib>Wuite, Gijs J.L.</creatorcontrib><creatorcontrib>Estes, Mary K.</creatorcontrib><creatorcontrib>Prasad, B. V. Venkataram</creatorcontrib><creatorcontrib>Heck, Albert J.R.</creatorcontrib><title>Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry</title><title>Molecular & cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>Viral capsid assembly, in which viral proteins self-assemble into complexes of well defined architecture, is a fascinating biological process. Although viral structure and assembly processes have been the subject of many excellent structural biology studies in the past, questions still remain regarding the intricate mechanisms that underlie viral structure, stability, and assembly. Here we used native mass spectrometry-based techniques to study the structure, stability, and assembly of Norwalk virus-like particles. Although detailed structural information on the fully assembled capsid exists, less information is available on potential capsid (dis)assembly intermediates, largely because of the inherent heterogeneity and complexity of the disassembly pathways. We used native mass spectrometry and atomic force microscopy to investigate the (dis)assembly of the Norwalk virus-like particles as a function of solution pH, ionic strength, and VP1 protein concentration. Native MS analysis at physiological pH revealed the presence of the complete capsid (T = 3) consisting of 180 copies of VP1. The mass of these capsid particles extends over 10 million Da, ranking them among the largest protein complexes ever analyzed by native MS. Although very stable under acidic conditions, the capsid was found to be sensitive to alkaline treatment. At elevated pH, intermediate structures consisting of 2, 4, 6, 18, 40, 60, and 80 copies of VP1 were observed with the VP160 (3.36-MDa) and VP180 (4.48-MDa) species being most abundant. Atomic force microscopy imaging and ion mobility mass spectrometry confirmed the formation of these latter midsize spherical particles at elevated pH. All these VP1 oligomers could be reversely assembled into the original capsid (VP1180). From the MS data collected over a range of experimental conditions, we suggest a disassembly model in which the T = 3 VP1180 particles dissociate into smaller oligomers, predominantly dimers, upon alkaline treatment prior to reassembly into VP160 and VP180 species.</description><subject>Capsid - chemistry</subject><subject>Capsid - ultrastructure</subject><subject>Microscopy, Atomic Force</subject><subject>Norwalk virus - physiology</subject><subject>Norwalk virus - ultrastructure</subject><subject>Osmolar Concentration</subject><subject>Particle Size</subject><subject>Spectrometry, Mass, Electrospray Ionization - methods</subject><subject>Virus Assembly - physiology</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2P0zAQhi0EoqXwBzig3DhlsR27iSWEVEUsILW7SPtxtSb2BAxJHOy0q_77NUqp4MJpvt55Z_QQ8prRC0ZL8a4348VOUbrmNN_VXzmlT8iSyULmSlTi6Tkv1wvyIsYflHLKSvmcLDgVrOKcL0l95cMDdD-zexf2MdvEiH3THTMYbHYzQeM6Nx2znR_c5AParEkFxJjdjGim4HucwvEledZCF_HVKa7I3eXH2_pzvr3-9KXebHMjOZ1y5IZJpoRlCAhFYQVUhgtQbalKiVgpwKJBUGvRiNZyELKVVpQKrQGUtliRD7PvuG_61MRhCtDpMbgewlF7cPrfyeC-62_-oLkqKiqLZPD2ZBD8rz3GSfcuGuw6GNDvoy5FpSSVqkpKPitN8DEGbM9XGNW_4esEX5_g6xl-Wnrz93_nlT-0k-D9LMBE6eAw6GgcDgatCwmntt79z_8RU06Xqg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Shoemaker, Glen K.</creator><creator>van Duijn, Esther</creator><creator>Crawford, Sue E.</creator><creator>Uetrecht, Charlotte</creator><creator>Baclayon, Marian</creator><creator>Roos, Wouter H.</creator><creator>Wuite, Gijs J.L.</creator><creator>Estes, Mary K.</creator><creator>Prasad, B. V. Venkataram</creator><creator>Heck, Albert J.R.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry</title><author>Shoemaker, Glen K. ; van Duijn, Esther ; Crawford, Sue E. ; Uetrecht, Charlotte ; Baclayon, Marian ; Roos, Wouter H. ; Wuite, Gijs J.L. ; Estes, Mary K. ; Prasad, B. V. Venkataram ; Heck, Albert J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-e2c15194d1eaea33d4a8c24a9f7975ee89ae3bea964b4fd2a45f5d479edcae5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Capsid - chemistry</topic><topic>Capsid - ultrastructure</topic><topic>Microscopy, Atomic Force</topic><topic>Norwalk virus - physiology</topic><topic>Norwalk virus - ultrastructure</topic><topic>Osmolar Concentration</topic><topic>Particle Size</topic><topic>Spectrometry, Mass, Electrospray Ionization - methods</topic><topic>Virus Assembly - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoemaker, Glen K.</creatorcontrib><creatorcontrib>van Duijn, Esther</creatorcontrib><creatorcontrib>Crawford, Sue E.</creatorcontrib><creatorcontrib>Uetrecht, Charlotte</creatorcontrib><creatorcontrib>Baclayon, Marian</creatorcontrib><creatorcontrib>Roos, Wouter H.</creatorcontrib><creatorcontrib>Wuite, Gijs J.L.</creatorcontrib><creatorcontrib>Estes, Mary K.</creatorcontrib><creatorcontrib>Prasad, B. V. Venkataram</creatorcontrib><creatorcontrib>Heck, Albert J.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular & cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoemaker, Glen K.</au><au>van Duijn, Esther</au><au>Crawford, Sue E.</au><au>Uetrecht, Charlotte</au><au>Baclayon, Marian</au><au>Roos, Wouter H.</au><au>Wuite, Gijs J.L.</au><au>Estes, Mary K.</au><au>Prasad, B. V. Venkataram</au><au>Heck, Albert J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry</atitle><jtitle>Molecular & cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>9</volume><issue>8</issue><spage>1742</spage><epage>1751</epage><pages>1742-1751</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>Viral capsid assembly, in which viral proteins self-assemble into complexes of well defined architecture, is a fascinating biological process. Although viral structure and assembly processes have been the subject of many excellent structural biology studies in the past, questions still remain regarding the intricate mechanisms that underlie viral structure, stability, and assembly. Here we used native mass spectrometry-based techniques to study the structure, stability, and assembly of Norwalk virus-like particles. Although detailed structural information on the fully assembled capsid exists, less information is available on potential capsid (dis)assembly intermediates, largely because of the inherent heterogeneity and complexity of the disassembly pathways. We used native mass spectrometry and atomic force microscopy to investigate the (dis)assembly of the Norwalk virus-like particles as a function of solution pH, ionic strength, and VP1 protein concentration. Native MS analysis at physiological pH revealed the presence of the complete capsid (T = 3) consisting of 180 copies of VP1. The mass of these capsid particles extends over 10 million Da, ranking them among the largest protein complexes ever analyzed by native MS. Although very stable under acidic conditions, the capsid was found to be sensitive to alkaline treatment. At elevated pH, intermediate structures consisting of 2, 4, 6, 18, 40, 60, and 80 copies of VP1 were observed with the VP160 (3.36-MDa) and VP180 (4.48-MDa) species being most abundant. Atomic force microscopy imaging and ion mobility mass spectrometry confirmed the formation of these latter midsize spherical particles at elevated pH. All these VP1 oligomers could be reversely assembled into the original capsid (VP1180). From the MS data collected over a range of experimental conditions, we suggest a disassembly model in which the T = 3 VP1180 particles dissociate into smaller oligomers, predominantly dimers, upon alkaline treatment prior to reassembly into VP160 and VP180 species.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20418222</pmid><doi>10.1074/mcp.M900620-MCP200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-9476 |
ispartof | Molecular & cellular proteomics, 2010-08, Vol.9 (8), p.1742-1751 |
issn | 1535-9476 1535-9484 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2938053 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Capsid - chemistry Capsid - ultrastructure Microscopy, Atomic Force Norwalk virus - physiology Norwalk virus - ultrastructure Osmolar Concentration Particle Size Spectrometry, Mass, Electrospray Ionization - methods Virus Assembly - physiology |
title | Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Norwalk%20Virus%20Assembly%20and%20Stability%20Monitored%20by%20Mass%20Spectrometry&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Shoemaker,%20Glen%20K.&rft.date=2010-08-01&rft.volume=9&rft.issue=8&rft.spage=1742&rft.epage=1751&rft.pages=1742-1751&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M900620-MCP200&rft_dat=%3Cproquest_pubme%3E748950598%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748950598&rft_id=info:pmid/20418222&rft_els_id=S1535947620309282&rfr_iscdi=true |