Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat

A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anestheti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2010-08, Vol.30 (33), p.11128-11142
Hauptverfasser: Quilichini, Pascale, Sirota, Anton, Buzsáki, György
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11142
container_issue 33
container_start_page 11128
container_title The Journal of neuroscience
container_volume 30
creator Quilichini, Pascale
Sirota, Anton
Buzsáki, György
description A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.
doi_str_mv 10.1523/jneurosci.1327-10.2010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2937273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748966566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</originalsourceid><addsrcrecordid>eNqFUc9vFCEUJkZjt9V_oZmb8TD1wTDAXEyaTbVrNjap9kwYYHdpZqAC01j_-jJubVovPZF8v97jfQgdYzjBLWk-XXs7xZC0O8EN4XWBCWB4hRaF7WpCAb9GCyAcakY5PUCHKV0DAAfM36IDArzICSzQduVzdD45XWkX9eRyFeJWefdHZRd8pbyp8s5mVW_VOKpqHjkMe87ceTU6nSrnZ01lfQ5x57waKh1itr-rsPlLRJXfoTcbNST7_uE9Qldfzn4uz-v1xdfV8nRd67YTuRZUGA6GW9ULTcyGkr7rBTWECKWZ6VvWKWaohqZnhdNGE4tZzwR0goHVzRH6vM-9mfrRGl12imqQN9GNKt7JoJx8zni3k9twK0nXcMKbEvBxH7D7z3Z-upYzBk0ryl3xLS7aDw_DYvg12ZTl6JK25T7ehilJ0TLOaQviRSWnomOsZawo2V6pS70p2s3jEhjkXL389v3s6vLix3Il5-pneK6-GI-f_vzR9q_r5h6MM651</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748966566</pqid></control><display><type>article</type><title>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Quilichini, Pascale ; Sirota, Anton ; Buzsáki, György</creator><creatorcontrib>Quilichini, Pascale ; Sirota, Anton ; Buzsáki, György</creatorcontrib><description>A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1327-10.2010</identifier><identifier>PMID: 20720120</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Axons - physiology ; Cell Membrane - physiology ; Dendrites - physiology ; Entorhinal Cortex - anatomy &amp; histology ; Entorhinal Cortex - cytology ; Entorhinal Cortex - physiology ; Interneurons - cytology ; Interneurons - physiology ; Life Sciences ; Male ; Microelectrodes ; Neural Pathways - anatomy &amp; histology ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurobiology ; Neurons - cytology ; Neurons - physiology ; Neurons and Cognition ; Periodicity ; Pyramidal Cells - cytology ; Pyramidal Cells - physiology ; Rats ; Rats, Sprague-Dawley ; Theta Rhythm ; Time Factors</subject><ispartof>The Journal of neuroscience, 2010-08, Vol.30 (33), p.11128-11142</ispartof><rights>Attribution</rights><rights>Copyright © 2010 the authors 0270-6474/10/3011128-15$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</citedby><cites>FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</cites><orcidid>0000-0001-9081-8655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937273/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937273/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20720120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-03582701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quilichini, Pascale</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><title>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Cell Membrane - physiology</subject><subject>Dendrites - physiology</subject><subject>Entorhinal Cortex - anatomy &amp; histology</subject><subject>Entorhinal Cortex - cytology</subject><subject>Entorhinal Cortex - physiology</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>Neural Pathways - anatomy &amp; histology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurobiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Periodicity</subject><subject>Pyramidal Cells - cytology</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Theta Rhythm</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUc9vFCEUJkZjt9V_oZmb8TD1wTDAXEyaTbVrNjap9kwYYHdpZqAC01j_-jJubVovPZF8v97jfQgdYzjBLWk-XXs7xZC0O8EN4XWBCWB4hRaF7WpCAb9GCyAcakY5PUCHKV0DAAfM36IDArzICSzQduVzdD45XWkX9eRyFeJWefdHZRd8pbyp8s5mVW_VOKpqHjkMe87ceTU6nSrnZ01lfQ5x57waKh1itr-rsPlLRJXfoTcbNST7_uE9Qldfzn4uz-v1xdfV8nRd67YTuRZUGA6GW9ULTcyGkr7rBTWECKWZ6VvWKWaohqZnhdNGE4tZzwR0goHVzRH6vM-9mfrRGl12imqQN9GNKt7JoJx8zni3k9twK0nXcMKbEvBxH7D7z3Z-upYzBk0ryl3xLS7aDw_DYvg12ZTl6JK25T7ehilJ0TLOaQviRSWnomOsZawo2V6pS70p2s3jEhjkXL389v3s6vLix3Il5-pneK6-GI-f_vzR9q_r5h6MM651</recordid><startdate>20100818</startdate><enddate>20100818</enddate><creator>Quilichini, Pascale</creator><creator>Sirota, Anton</creator><creator>Buzsáki, György</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9081-8655</orcidid></search><sort><creationdate>20100818</creationdate><title>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</title><author>Quilichini, Pascale ; Sirota, Anton ; Buzsáki, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Cell Membrane - physiology</topic><topic>Dendrites - physiology</topic><topic>Entorhinal Cortex - anatomy &amp; histology</topic><topic>Entorhinal Cortex - cytology</topic><topic>Entorhinal Cortex - physiology</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>Neural Pathways - anatomy &amp; histology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurobiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Periodicity</topic><topic>Pyramidal Cells - cytology</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Theta Rhythm</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quilichini, Pascale</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quilichini, Pascale</au><au>Sirota, Anton</au><au>Buzsáki, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-08-18</date><risdate>2010</risdate><volume>30</volume><issue>33</issue><spage>11128</spage><epage>11142</epage><pages>11128-11142</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20720120</pmid><doi>10.1523/jneurosci.1327-10.2010</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9081-8655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2010-08, Vol.30 (33), p.11128-11142
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2937273
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Axons - physiology
Cell Membrane - physiology
Dendrites - physiology
Entorhinal Cortex - anatomy & histology
Entorhinal Cortex - cytology
Entorhinal Cortex - physiology
Interneurons - cytology
Interneurons - physiology
Life Sciences
Male
Microelectrodes
Neural Pathways - anatomy & histology
Neural Pathways - cytology
Neural Pathways - physiology
Neurobiology
Neurons - cytology
Neurons - physiology
Neurons and Cognition
Periodicity
Pyramidal Cells - cytology
Pyramidal Cells - physiology
Rats
Rats, Sprague-Dawley
Theta Rhythm
Time Factors
title Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20circuit%20organization%20and%20theta-gamma%20oscillation%20dynamics%20in%20the%20entorhinal%20cortex%20of%20the%20rat&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Quilichini,%20Pascale&rft.date=2010-08-18&rft.volume=30&rft.issue=33&rft.spage=11128&rft.epage=11142&rft.pages=11128-11142&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1327-10.2010&rft_dat=%3Cproquest_pubme%3E748966566%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748966566&rft_id=info:pmid/20720120&rfr_iscdi=true