Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat
A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anestheti...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2010-08, Vol.30 (33), p.11128-11142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11142 |
---|---|
container_issue | 33 |
container_start_page | 11128 |
container_title | The Journal of neuroscience |
container_volume | 30 |
creator | Quilichini, Pascale Sirota, Anton Buzsáki, György |
description | A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal. |
doi_str_mv | 10.1523/jneurosci.1327-10.2010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2937273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748966566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</originalsourceid><addsrcrecordid>eNqFUc9vFCEUJkZjt9V_oZmb8TD1wTDAXEyaTbVrNjap9kwYYHdpZqAC01j_-jJubVovPZF8v97jfQgdYzjBLWk-XXs7xZC0O8EN4XWBCWB4hRaF7WpCAb9GCyAcakY5PUCHKV0DAAfM36IDArzICSzQduVzdD45XWkX9eRyFeJWefdHZRd8pbyp8s5mVW_VOKpqHjkMe87ceTU6nSrnZ01lfQ5x57waKh1itr-rsPlLRJXfoTcbNST7_uE9Qldfzn4uz-v1xdfV8nRd67YTuRZUGA6GW9ULTcyGkr7rBTWECKWZ6VvWKWaohqZnhdNGE4tZzwR0goHVzRH6vM-9mfrRGl12imqQN9GNKt7JoJx8zni3k9twK0nXcMKbEvBxH7D7z3Z-upYzBk0ryl3xLS7aDw_DYvg12ZTl6JK25T7ehilJ0TLOaQviRSWnomOsZawo2V6pS70p2s3jEhjkXL389v3s6vLix3Il5-pneK6-GI-f_vzR9q_r5h6MM651</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748966566</pqid></control><display><type>article</type><title>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Quilichini, Pascale ; Sirota, Anton ; Buzsáki, György</creator><creatorcontrib>Quilichini, Pascale ; Sirota, Anton ; Buzsáki, György</creatorcontrib><description>A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1327-10.2010</identifier><identifier>PMID: 20720120</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Axons - physiology ; Cell Membrane - physiology ; Dendrites - physiology ; Entorhinal Cortex - anatomy & histology ; Entorhinal Cortex - cytology ; Entorhinal Cortex - physiology ; Interneurons - cytology ; Interneurons - physiology ; Life Sciences ; Male ; Microelectrodes ; Neural Pathways - anatomy & histology ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurobiology ; Neurons - cytology ; Neurons - physiology ; Neurons and Cognition ; Periodicity ; Pyramidal Cells - cytology ; Pyramidal Cells - physiology ; Rats ; Rats, Sprague-Dawley ; Theta Rhythm ; Time Factors</subject><ispartof>The Journal of neuroscience, 2010-08, Vol.30 (33), p.11128-11142</ispartof><rights>Attribution</rights><rights>Copyright © 2010 the authors 0270-6474/10/3011128-15$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</citedby><cites>FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</cites><orcidid>0000-0001-9081-8655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937273/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937273/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20720120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-03582701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quilichini, Pascale</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><title>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Cell Membrane - physiology</subject><subject>Dendrites - physiology</subject><subject>Entorhinal Cortex - anatomy & histology</subject><subject>Entorhinal Cortex - cytology</subject><subject>Entorhinal Cortex - physiology</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>Neural Pathways - anatomy & histology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurobiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Periodicity</subject><subject>Pyramidal Cells - cytology</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Theta Rhythm</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUc9vFCEUJkZjt9V_oZmb8TD1wTDAXEyaTbVrNjap9kwYYHdpZqAC01j_-jJubVovPZF8v97jfQgdYzjBLWk-XXs7xZC0O8EN4XWBCWB4hRaF7WpCAb9GCyAcakY5PUCHKV0DAAfM36IDArzICSzQduVzdD45XWkX9eRyFeJWefdHZRd8pbyp8s5mVW_VOKpqHjkMe87ceTU6nSrnZ01lfQ5x57waKh1itr-rsPlLRJXfoTcbNST7_uE9Qldfzn4uz-v1xdfV8nRd67YTuRZUGA6GW9ULTcyGkr7rBTWECKWZ6VvWKWaohqZnhdNGE4tZzwR0goHVzRH6vM-9mfrRGl12imqQN9GNKt7JoJx8zni3k9twK0nXcMKbEvBxH7D7z3Z-upYzBk0ryl3xLS7aDw_DYvg12ZTl6JK25T7ehilJ0TLOaQviRSWnomOsZawo2V6pS70p2s3jEhjkXL389v3s6vLix3Il5-pneK6-GI-f_vzR9q_r5h6MM651</recordid><startdate>20100818</startdate><enddate>20100818</enddate><creator>Quilichini, Pascale</creator><creator>Sirota, Anton</creator><creator>Buzsáki, György</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9081-8655</orcidid></search><sort><creationdate>20100818</creationdate><title>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</title><author>Quilichini, Pascale ; Sirota, Anton ; Buzsáki, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-848d70d7eab8c2df42b9b84d228ac6db569a6d4c03b642bcdc2e16b6809860ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Cell Membrane - physiology</topic><topic>Dendrites - physiology</topic><topic>Entorhinal Cortex - anatomy & histology</topic><topic>Entorhinal Cortex - cytology</topic><topic>Entorhinal Cortex - physiology</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>Neural Pathways - anatomy & histology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurobiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Periodicity</topic><topic>Pyramidal Cells - cytology</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Theta Rhythm</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quilichini, Pascale</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quilichini, Pascale</au><au>Sirota, Anton</au><au>Buzsáki, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-08-18</date><risdate>2010</risdate><volume>30</volume><issue>33</issue><spage>11128</spage><epage>11142</epage><pages>11128-11142</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>A thorough knowledge of the intrinsic circuit properties of the entorhinal cortex (EC) and the temporal dynamics these circuits support is essential for understanding how information is exchanged between the hippocampus and neocortex. Using intracellular and extracellular recordings in the anesthetized rat and anatomical reconstruction of single cells, we found that EC5 and EC2 principal neurons form large axonal networks mainly within their layers, interconnected by the more vertically organized axon trees of EC3 pyramidal cells. Principal cells showed layer-specific unique membrane properties and contributed differentially to theta and gamma oscillations. EC2 principal cells were most strongly phase modulated by EC theta. The multiple gamma oscillators, present in the various EC layers, were temporally coordinated by the phase of theta waves. Putative interneurons in all EC layers fired relatively synchronously within the theta cycle, coinciding with the maximum power of gamma oscillation. The special wiring architecture and unique membrane properties of EC neurons may underlie their behaviorally distinct firing patterns in the waking animal.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20720120</pmid><doi>10.1523/jneurosci.1327-10.2010</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9081-8655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2010-08, Vol.30 (33), p.11128-11142 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2937273 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Axons - physiology Cell Membrane - physiology Dendrites - physiology Entorhinal Cortex - anatomy & histology Entorhinal Cortex - cytology Entorhinal Cortex - physiology Interneurons - cytology Interneurons - physiology Life Sciences Male Microelectrodes Neural Pathways - anatomy & histology Neural Pathways - cytology Neural Pathways - physiology Neurobiology Neurons - cytology Neurons - physiology Neurons and Cognition Periodicity Pyramidal Cells - cytology Pyramidal Cells - physiology Rats Rats, Sprague-Dawley Theta Rhythm Time Factors |
title | Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20circuit%20organization%20and%20theta-gamma%20oscillation%20dynamics%20in%20the%20entorhinal%20cortex%20of%20the%20rat&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Quilichini,%20Pascale&rft.date=2010-08-18&rft.volume=30&rft.issue=33&rft.spage=11128&rft.epage=11142&rft.pages=11128-11142&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1327-10.2010&rft_dat=%3Cproquest_pubme%3E748966566%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748966566&rft_id=info:pmid/20720120&rfr_iscdi=true |