Proangiogenic scaffolds as functional templates for cardiac tissue engineering

We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (34), p.15211-15216
Hauptverfasser: Madden, Lauran R., Mortisen, Derek J., Sussman, Eric M., Dupras, Sarah K., Fugate, James A., Cuy, Janet L., Hauch, Kip D., Laflamme, Michael A., Murry, Charles E., Ratner, Buddy D., Langer, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15216
container_issue 34
container_start_page 15211
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Madden, Lauran R.
Mortisen, Derek J.
Sussman, Eric M.
Dupras, Sarah K.
Fugate, James A.
Cuy, Janet L.
Hauch, Kip D.
Laflamme, Michael A.
Murry, Charles E.
Ratner, Buddy D.
Langer, Robert
description We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.
doi_str_mv 10.1073/pnas.1006442107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2930533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862219</jstor_id><sourcerecordid>27862219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-b82fe3d3de546e6390b005f87593b1d4d1c4c42d265f3534365bee666e4c9abb3</originalsourceid><addsrcrecordid>eNqFkbtvFDEQxq0IlBwhdSqiVRqqJX4_GqQo4iVFQAG15fXOHj7t2Rd7Fyn_PV7dkQMaqhmNf9-n8XwIXRL8hmDFbnbRldphyTmtgxO0ItiQVnKDn6EVxlS1mlN-hl6UssEYG6HxKTqjWBppiFqhz19zcnEd0hpi8E3xbhjS2JfGlWaYo59Cim5sJtjuRjdBHabceJf74HwzhVJmaKDqI0AOcf0SPR_cWODiUM_R9_fvvt19bO-_fPh0d3vfeiH51HaaDsB61oPgEiQzuMNYDFoJwzrS85547jntqRQDE4wzKToAKSVwb1zXsXP0du-7m7st9B7ilN1odzlsXX60yQX790sMP-w6_bTUMCwYqwavDwY5PcxQJrsNxcM4ughpLlZLpZjiTP2XVFwbrSmjlbz-h9ykOdfzLZBaTs91hW72kM-plAzD09IE2yVTu2Rqj5lWxdWff33if4dYgeYALMqjnbKMWyIoIRV5tUc2ZUr5aKG0pJQY9guRqLJb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747958048</pqid></control><display><type>article</type><title>Proangiogenic scaffolds as functional templates for cardiac tissue engineering</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Madden, Lauran R. ; Mortisen, Derek J. ; Sussman, Eric M. ; Dupras, Sarah K. ; Fugate, James A. ; Cuy, Janet L. ; Hauch, Kip D. ; Laflamme, Michael A. ; Murry, Charles E. ; Ratner, Buddy D. ; Langer, Robert</creator><creatorcontrib>Madden, Lauran R. ; Mortisen, Derek J. ; Sussman, Eric M. ; Dupras, Sarah K. ; Fugate, James A. ; Cuy, Janet L. ; Hauch, Kip D. ; Laflamme, Michael A. ; Murry, Charles E. ; Ratner, Buddy D. ; Langer, Robert</creatorcontrib><description>We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1006442107</identifier><identifier>PMID: 20696917</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angiogenesis ; Animals ; Biological Sciences ; Cardiac muscle ; cardiomyocytes ; Cell Count ; Cell culture ; Channel pores ; Chick Embryo ; Embryonic stem cells ; Endothelial cells ; Heart ; Humans ; Hydrogels ; Inflammation ; Integration ; Macrophages ; Mass transfer ; Methacrylates ; Microscopy, Electron, Scanning ; Muscles ; Myocardium ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - physiology ; Neovascularization, Physiologic ; Phenotypes ; Polyhydroxyethyl Methacrylate ; Rats ; Rats, Nude ; Rats, Sprague-Dawley ; Scaffolds ; Stem cells ; Stroma ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; vascularization ; Ventricular Myosins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (34), p.15211-15216</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 24, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-b82fe3d3de546e6390b005f87593b1d4d1c4c42d265f3534365bee666e4c9abb3</citedby><cites>FETCH-LOGICAL-c564t-b82fe3d3de546e6390b005f87593b1d4d1c4c42d265f3534365bee666e4c9abb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/34.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862219$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862219$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20696917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madden, Lauran R.</creatorcontrib><creatorcontrib>Mortisen, Derek J.</creatorcontrib><creatorcontrib>Sussman, Eric M.</creatorcontrib><creatorcontrib>Dupras, Sarah K.</creatorcontrib><creatorcontrib>Fugate, James A.</creatorcontrib><creatorcontrib>Cuy, Janet L.</creatorcontrib><creatorcontrib>Hauch, Kip D.</creatorcontrib><creatorcontrib>Laflamme, Michael A.</creatorcontrib><creatorcontrib>Murry, Charles E.</creatorcontrib><creatorcontrib>Ratner, Buddy D.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><title>Proangiogenic scaffolds as functional templates for cardiac tissue engineering</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cardiac muscle</subject><subject>cardiomyocytes</subject><subject>Cell Count</subject><subject>Cell culture</subject><subject>Channel pores</subject><subject>Chick Embryo</subject><subject>Embryonic stem cells</subject><subject>Endothelial cells</subject><subject>Heart</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Inflammation</subject><subject>Integration</subject><subject>Macrophages</subject><subject>Mass transfer</subject><subject>Methacrylates</subject><subject>Microscopy, Electron, Scanning</subject><subject>Muscles</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Neovascularization, Physiologic</subject><subject>Phenotypes</subject><subject>Polyhydroxyethyl Methacrylate</subject><subject>Rats</subject><subject>Rats, Nude</subject><subject>Rats, Sprague-Dawley</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Stroma</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>vascularization</subject><subject>Ventricular Myosins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtvFDEQxq0IlBwhdSqiVRqqJX4_GqQo4iVFQAG15fXOHj7t2Rd7Fyn_PV7dkQMaqhmNf9-n8XwIXRL8hmDFbnbRldphyTmtgxO0ItiQVnKDn6EVxlS1mlN-hl6UssEYG6HxKTqjWBppiFqhz19zcnEd0hpi8E3xbhjS2JfGlWaYo59Cim5sJtjuRjdBHabceJf74HwzhVJmaKDqI0AOcf0SPR_cWODiUM_R9_fvvt19bO-_fPh0d3vfeiH51HaaDsB61oPgEiQzuMNYDFoJwzrS85547jntqRQDE4wzKToAKSVwb1zXsXP0du-7m7st9B7ilN1odzlsXX60yQX790sMP-w6_bTUMCwYqwavDwY5PcxQJrsNxcM4ughpLlZLpZjiTP2XVFwbrSmjlbz-h9ykOdfzLZBaTs91hW72kM-plAzD09IE2yVTu2Rqj5lWxdWff33if4dYgeYALMqjnbKMWyIoIRV5tUc2ZUr5aKG0pJQY9guRqLJb</recordid><startdate>20100824</startdate><enddate>20100824</enddate><creator>Madden, Lauran R.</creator><creator>Mortisen, Derek J.</creator><creator>Sussman, Eric M.</creator><creator>Dupras, Sarah K.</creator><creator>Fugate, James A.</creator><creator>Cuy, Janet L.</creator><creator>Hauch, Kip D.</creator><creator>Laflamme, Michael A.</creator><creator>Murry, Charles E.</creator><creator>Ratner, Buddy D.</creator><creator>Langer, Robert</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20100824</creationdate><title>Proangiogenic scaffolds as functional templates for cardiac tissue engineering</title><author>Madden, Lauran R. ; Mortisen, Derek J. ; Sussman, Eric M. ; Dupras, Sarah K. ; Fugate, James A. ; Cuy, Janet L. ; Hauch, Kip D. ; Laflamme, Michael A. ; Murry, Charles E. ; Ratner, Buddy D. ; Langer, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-b82fe3d3de546e6390b005f87593b1d4d1c4c42d265f3534365bee666e4c9abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cardiac muscle</topic><topic>cardiomyocytes</topic><topic>Cell Count</topic><topic>Cell culture</topic><topic>Channel pores</topic><topic>Chick Embryo</topic><topic>Embryonic stem cells</topic><topic>Endothelial cells</topic><topic>Heart</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Inflammation</topic><topic>Integration</topic><topic>Macrophages</topic><topic>Mass transfer</topic><topic>Methacrylates</topic><topic>Microscopy, Electron, Scanning</topic><topic>Muscles</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Neovascularization, Physiologic</topic><topic>Phenotypes</topic><topic>Polyhydroxyethyl Methacrylate</topic><topic>Rats</topic><topic>Rats, Nude</topic><topic>Rats, Sprague-Dawley</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Stroma</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>vascularization</topic><topic>Ventricular Myosins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madden, Lauran R.</creatorcontrib><creatorcontrib>Mortisen, Derek J.</creatorcontrib><creatorcontrib>Sussman, Eric M.</creatorcontrib><creatorcontrib>Dupras, Sarah K.</creatorcontrib><creatorcontrib>Fugate, James A.</creatorcontrib><creatorcontrib>Cuy, Janet L.</creatorcontrib><creatorcontrib>Hauch, Kip D.</creatorcontrib><creatorcontrib>Laflamme, Michael A.</creatorcontrib><creatorcontrib>Murry, Charles E.</creatorcontrib><creatorcontrib>Ratner, Buddy D.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madden, Lauran R.</au><au>Mortisen, Derek J.</au><au>Sussman, Eric M.</au><au>Dupras, Sarah K.</au><au>Fugate, James A.</au><au>Cuy, Janet L.</au><au>Hauch, Kip D.</au><au>Laflamme, Michael A.</au><au>Murry, Charles E.</au><au>Ratner, Buddy D.</au><au>Langer, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proangiogenic scaffolds as functional templates for cardiac tissue engineering</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-24</date><risdate>2010</risdate><volume>107</volume><issue>34</issue><spage>15211</spage><epage>15216</epage><pages>15211-15216</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20696917</pmid><doi>10.1073/pnas.1006442107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (34), p.15211-15216
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2930533
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Angiogenesis
Animals
Biological Sciences
Cardiac muscle
cardiomyocytes
Cell Count
Cell culture
Channel pores
Chick Embryo
Embryonic stem cells
Endothelial cells
Heart
Humans
Hydrogels
Inflammation
Integration
Macrophages
Mass transfer
Methacrylates
Microscopy, Electron, Scanning
Muscles
Myocardium
Myocytes, Cardiac - cytology
Myocytes, Cardiac - physiology
Neovascularization, Physiologic
Phenotypes
Polyhydroxyethyl Methacrylate
Rats
Rats, Nude
Rats, Sprague-Dawley
Scaffolds
Stem cells
Stroma
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
vascularization
Ventricular Myosins - metabolism
title Proangiogenic scaffolds as functional templates for cardiac tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proangiogenic%20scaffolds%20as%20functional%20templates%20for%20cardiac%20tissue%20engineering&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Madden,%20Lauran%20R.&rft.date=2010-08-24&rft.volume=107&rft.issue=34&rft.spage=15211&rft.epage=15216&rft.pages=15211-15216&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1006442107&rft_dat=%3Cjstor_pubme%3E27862219%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747958048&rft_id=info:pmid/20696917&rft_jstor_id=27862219&rfr_iscdi=true