Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis

Endothelial tubulogenesis is a crucial step in the formation of functional blood vessels during angiogenesis and vasculogenesis. Here, we use in vivo imaging of living zebrafish embryos expressing fluorescent fusion proteins of beta-Actin, alpha-Catenin, and the ERM family member Moesin1 (Moesin a),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2010-09, Vol.137 (18), p.3119-3128
Hauptverfasser: Wang, Ying, Kaiser, Mark S, Larson, Jon D, Nasevicius, Aidas, Clark, Karl J, Wadman, Shannon A, Roberg-Perez, Sharon E, Ekker, Stephen C, Hackett, Perry B, McGrail, Maura, Essner, Jeffrey J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3128
container_issue 18
container_start_page 3119
container_title Development (Cambridge)
container_volume 137
creator Wang, Ying
Kaiser, Mark S
Larson, Jon D
Nasevicius, Aidas
Clark, Karl J
Wadman, Shannon A
Roberg-Perez, Sharon E
Ekker, Stephen C
Hackett, Perry B
McGrail, Maura
Essner, Jeffrey J
description Endothelial tubulogenesis is a crucial step in the formation of functional blood vessels during angiogenesis and vasculogenesis. Here, we use in vivo imaging of living zebrafish embryos expressing fluorescent fusion proteins of beta-Actin, alpha-Catenin, and the ERM family member Moesin1 (Moesin a), to define a novel cord hollowing process that occurs during the initial stages of tubulogenesis in intersegmental vessels (ISVs) in the embryo. We show that the primary lumen elongates along cell junctions between at least two endothelial cells during embryonic angiogenesis. Moesin1-EGFP is enriched around structures that resemble intracellular vacuoles, which fuse with the luminal membrane during expansion of the primary lumen. Analysis of silent heart mutant embryos shows that initial lumen formation in the ISVs is not dependent on blood flow; however, stabilization of a newly formed lumen is dependent upon blood flow. Zebrafish moesin1 knockdown and cell transplantation experiments demonstrate that Moesin1 is required in the endothelial cells of the ISVs for in vivo lumen formation. Our analyses suggest that Moesin1 contributes to the maintenance of apical/basal cell polarity of the ISVs as defined by adherens junctions. Knockdown of the adherens junction protein Ve-cadherin disrupts formation of the apical membrane and lumen in a cell-autonomous manner. We suggest that Ve-cadherin and Moesin1 function to establish and maintain apical/basal polarity during multicellular lumen formation in the ISVs.
doi_str_mv 10.1242/dev.048785
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2926960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748989203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-8b2e6584f469e08ab64e145e413d2a018428bba08ad176443622d15a70b8ab7f3</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWh8bf4DMThBGk0wmj40gxRcobrTbkJnctpHppE1mBvz3plSLrnR1uZyPwzkchE4JviSU0SsLwyVmUshyB40IEyJXhKpdNMKqxDlRihygwxjfMcYFF2IfHVAsCk6lHKHJs4foWpKZ1mYTyGtj5xBcm5kAWYBV7wLYLP3QWt_NoXGmyWpompjZPnGztTa4wWddX_WNn0Gb_OIx2puaJsLJ1z1Cb3e3r-OH_Onl_nF885TXJRZdLisKvJRsyrgCLE3FGRBWAiOFpQYTyaisKpMUSwRnLIWmlpRG4CrBYlocoeuN77KvFmBraLtgGr0MbmHCh_bG6d9K6-Z65gdNFeWK42Rw_mUQ_KqH2OmFi-t-pgXfRy1LLrigUv2PZIWUf5KCSSUVxUUiLzZkHXyMAabb5ATr9bY6bas32yb47GfXLfo9ZvEJsa-f2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748989203</pqid></control><display><type>article</type><title>Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Wang, Ying ; Kaiser, Mark S ; Larson, Jon D ; Nasevicius, Aidas ; Clark, Karl J ; Wadman, Shannon A ; Roberg-Perez, Sharon E ; Ekker, Stephen C ; Hackett, Perry B ; McGrail, Maura ; Essner, Jeffrey J</creator><creatorcontrib>Wang, Ying ; Kaiser, Mark S ; Larson, Jon D ; Nasevicius, Aidas ; Clark, Karl J ; Wadman, Shannon A ; Roberg-Perez, Sharon E ; Ekker, Stephen C ; Hackett, Perry B ; McGrail, Maura ; Essner, Jeffrey J</creatorcontrib><description>Endothelial tubulogenesis is a crucial step in the formation of functional blood vessels during angiogenesis and vasculogenesis. Here, we use in vivo imaging of living zebrafish embryos expressing fluorescent fusion proteins of beta-Actin, alpha-Catenin, and the ERM family member Moesin1 (Moesin a), to define a novel cord hollowing process that occurs during the initial stages of tubulogenesis in intersegmental vessels (ISVs) in the embryo. We show that the primary lumen elongates along cell junctions between at least two endothelial cells during embryonic angiogenesis. Moesin1-EGFP is enriched around structures that resemble intracellular vacuoles, which fuse with the luminal membrane during expansion of the primary lumen. Analysis of silent heart mutant embryos shows that initial lumen formation in the ISVs is not dependent on blood flow; however, stabilization of a newly formed lumen is dependent upon blood flow. Zebrafish moesin1 knockdown and cell transplantation experiments demonstrate that Moesin1 is required in the endothelial cells of the ISVs for in vivo lumen formation. Our analyses suggest that Moesin1 contributes to the maintenance of apical/basal cell polarity of the ISVs as defined by adherens junctions. Knockdown of the adherens junction protein Ve-cadherin disrupts formation of the apical membrane and lumen in a cell-autonomous manner. We suggest that Ve-cadherin and Moesin1 function to establish and maintain apical/basal polarity during multicellular lumen formation in the ISVs.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.048785</identifier><identifier>PMID: 20736288</identifier><language>eng</language><publisher>England: Company of Biologists</publisher><subject>Adherens Junctions - metabolism ; Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Cadherins - genetics ; Cadherins - metabolism ; Cell Polarity ; Danio rerio ; Embryo, Nonmammalian - blood supply ; Embryo, Nonmammalian - metabolism ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Freshwater ; Gene Expression Regulation, Developmental ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microfilament Proteins - deficiency ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Neovascularization, Physiologic ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - metabolism ; Zonula Occludens-1 Protein</subject><ispartof>Development (Cambridge), 2010-09, Vol.137 (18), p.3119-3128</ispartof><rights>2010. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-8b2e6584f469e08ab64e145e413d2a018428bba08ad176443622d15a70b8ab7f3</citedby><cites>FETCH-LOGICAL-c507t-8b2e6584f469e08ab64e145e413d2a018428bba08ad176443622d15a70b8ab7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20736288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Kaiser, Mark S</creatorcontrib><creatorcontrib>Larson, Jon D</creatorcontrib><creatorcontrib>Nasevicius, Aidas</creatorcontrib><creatorcontrib>Clark, Karl J</creatorcontrib><creatorcontrib>Wadman, Shannon A</creatorcontrib><creatorcontrib>Roberg-Perez, Sharon E</creatorcontrib><creatorcontrib>Ekker, Stephen C</creatorcontrib><creatorcontrib>Hackett, Perry B</creatorcontrib><creatorcontrib>McGrail, Maura</creatorcontrib><creatorcontrib>Essner, Jeffrey J</creatorcontrib><title>Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Endothelial tubulogenesis is a crucial step in the formation of functional blood vessels during angiogenesis and vasculogenesis. Here, we use in vivo imaging of living zebrafish embryos expressing fluorescent fusion proteins of beta-Actin, alpha-Catenin, and the ERM family member Moesin1 (Moesin a), to define a novel cord hollowing process that occurs during the initial stages of tubulogenesis in intersegmental vessels (ISVs) in the embryo. We show that the primary lumen elongates along cell junctions between at least two endothelial cells during embryonic angiogenesis. Moesin1-EGFP is enriched around structures that resemble intracellular vacuoles, which fuse with the luminal membrane during expansion of the primary lumen. Analysis of silent heart mutant embryos shows that initial lumen formation in the ISVs is not dependent on blood flow; however, stabilization of a newly formed lumen is dependent upon blood flow. Zebrafish moesin1 knockdown and cell transplantation experiments demonstrate that Moesin1 is required in the endothelial cells of the ISVs for in vivo lumen formation. Our analyses suggest that Moesin1 contributes to the maintenance of apical/basal cell polarity of the ISVs as defined by adherens junctions. Knockdown of the adherens junction protein Ve-cadherin disrupts formation of the apical membrane and lumen in a cell-autonomous manner. We suggest that Ve-cadherin and Moesin1 function to establish and maintain apical/basal polarity during multicellular lumen formation in the ISVs.</description><subject>Adherens Junctions - metabolism</subject><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cell Polarity</subject><subject>Danio rerio</subject><subject>Embryo, Nonmammalian - blood supply</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Freshwater</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microfilament Proteins - deficiency</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Neovascularization, Physiologic</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><subject>Zonula Occludens-1 Protein</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMoWh8bf4DMThBGk0wmj40gxRcobrTbkJnctpHppE1mBvz3plSLrnR1uZyPwzkchE4JviSU0SsLwyVmUshyB40IEyJXhKpdNMKqxDlRihygwxjfMcYFF2IfHVAsCk6lHKHJs4foWpKZ1mYTyGtj5xBcm5kAWYBV7wLYLP3QWt_NoXGmyWpompjZPnGztTa4wWddX_WNn0Gb_OIx2puaJsLJ1z1Cb3e3r-OH_Onl_nF885TXJRZdLisKvJRsyrgCLE3FGRBWAiOFpQYTyaisKpMUSwRnLIWmlpRG4CrBYlocoeuN77KvFmBraLtgGr0MbmHCh_bG6d9K6-Z65gdNFeWK42Rw_mUQ_KqH2OmFi-t-pgXfRy1LLrigUv2PZIWUf5KCSSUVxUUiLzZkHXyMAabb5ATr9bY6bas32yb47GfXLfo9ZvEJsa-f2g</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Wang, Ying</creator><creator>Kaiser, Mark S</creator><creator>Larson, Jon D</creator><creator>Nasevicius, Aidas</creator><creator>Clark, Karl J</creator><creator>Wadman, Shannon A</creator><creator>Roberg-Perez, Sharon E</creator><creator>Ekker, Stephen C</creator><creator>Hackett, Perry B</creator><creator>McGrail, Maura</creator><creator>Essner, Jeffrey J</creator><general>Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20100915</creationdate><title>Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis</title><author>Wang, Ying ; Kaiser, Mark S ; Larson, Jon D ; Nasevicius, Aidas ; Clark, Karl J ; Wadman, Shannon A ; Roberg-Perez, Sharon E ; Ekker, Stephen C ; Hackett, Perry B ; McGrail, Maura ; Essner, Jeffrey J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-8b2e6584f469e08ab64e145e413d2a018428bba08ad176443622d15a70b8ab7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adherens Junctions - metabolism</topic><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cell Polarity</topic><topic>Danio rerio</topic><topic>Embryo, Nonmammalian - blood supply</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Freshwater</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microfilament Proteins - deficiency</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Neovascularization, Physiologic</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><topic>Zonula Occludens-1 Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Kaiser, Mark S</creatorcontrib><creatorcontrib>Larson, Jon D</creatorcontrib><creatorcontrib>Nasevicius, Aidas</creatorcontrib><creatorcontrib>Clark, Karl J</creatorcontrib><creatorcontrib>Wadman, Shannon A</creatorcontrib><creatorcontrib>Roberg-Perez, Sharon E</creatorcontrib><creatorcontrib>Ekker, Stephen C</creatorcontrib><creatorcontrib>Hackett, Perry B</creatorcontrib><creatorcontrib>McGrail, Maura</creatorcontrib><creatorcontrib>Essner, Jeffrey J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying</au><au>Kaiser, Mark S</au><au>Larson, Jon D</au><au>Nasevicius, Aidas</au><au>Clark, Karl J</au><au>Wadman, Shannon A</au><au>Roberg-Perez, Sharon E</au><au>Ekker, Stephen C</au><au>Hackett, Perry B</au><au>McGrail, Maura</au><au>Essner, Jeffrey J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2010-09-15</date><risdate>2010</risdate><volume>137</volume><issue>18</issue><spage>3119</spage><epage>3128</epage><pages>3119-3128</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Endothelial tubulogenesis is a crucial step in the formation of functional blood vessels during angiogenesis and vasculogenesis. Here, we use in vivo imaging of living zebrafish embryos expressing fluorescent fusion proteins of beta-Actin, alpha-Catenin, and the ERM family member Moesin1 (Moesin a), to define a novel cord hollowing process that occurs during the initial stages of tubulogenesis in intersegmental vessels (ISVs) in the embryo. We show that the primary lumen elongates along cell junctions between at least two endothelial cells during embryonic angiogenesis. Moesin1-EGFP is enriched around structures that resemble intracellular vacuoles, which fuse with the luminal membrane during expansion of the primary lumen. Analysis of silent heart mutant embryos shows that initial lumen formation in the ISVs is not dependent on blood flow; however, stabilization of a newly formed lumen is dependent upon blood flow. Zebrafish moesin1 knockdown and cell transplantation experiments demonstrate that Moesin1 is required in the endothelial cells of the ISVs for in vivo lumen formation. Our analyses suggest that Moesin1 contributes to the maintenance of apical/basal cell polarity of the ISVs as defined by adherens junctions. Knockdown of the adherens junction protein Ve-cadherin disrupts formation of the apical membrane and lumen in a cell-autonomous manner. We suggest that Ve-cadherin and Moesin1 function to establish and maintain apical/basal polarity during multicellular lumen formation in the ISVs.</abstract><cop>England</cop><pub>Company of Biologists</pub><pmid>20736288</pmid><doi>10.1242/dev.048785</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2010-09, Vol.137 (18), p.3119-3128
issn 0950-1991
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2926960
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Adherens Junctions - metabolism
Animals
Antigens, CD - genetics
Antigens, CD - metabolism
Cadherins - genetics
Cadherins - metabolism
Cell Polarity
Danio rerio
Embryo, Nonmammalian - blood supply
Embryo, Nonmammalian - metabolism
Endothelial Cells - cytology
Endothelial Cells - metabolism
Freshwater
Gene Expression Regulation, Developmental
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microfilament Proteins - deficiency
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Neovascularization, Physiologic
Phosphoproteins - genetics
Phosphoproteins - metabolism
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - metabolism
Zonula Occludens-1 Protein
title Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moesin1%20and%20Ve-cadherin%20are%20required%20in%20endothelial%20cells%20during%20in%20vivo%20tubulogenesis&rft.jtitle=Development%20(Cambridge)&rft.au=Wang,%20Ying&rft.date=2010-09-15&rft.volume=137&rft.issue=18&rft.spage=3119&rft.epage=3128&rft.pages=3119-3128&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.048785&rft_dat=%3Cproquest_pubme%3E748989203%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748989203&rft_id=info:pmid/20736288&rfr_iscdi=true