SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space

A new approach to autocalibrating, coil‐by‐coil parallel imaging reconstruction, is presented. It is a generalized reconstruction framework based on self‐consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2010-08, Vol.64 (2), p.457-471
Hauptverfasser: Lustig, Michael, Pauly, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 2
container_start_page 457
container_title Magnetic resonance in medicine
container_volume 64
creator Lustig, Michael
Pauly, John M.
description A new approach to autocalibrating, coil‐by‐coil parallel imaging reconstruction, is presented. It is a generalized reconstruction framework based on self‐consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k‐space sampling patterns. The formulation can flexibly incorporate additional image priors such as off‐resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k‐space domain are presented. These are based on a projection over convex sets and conjugate gradient algorithms. Phantom and in vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off‐resonance correction and nonlinear ℓ1‐wavelet regularization are also demonstrated. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.22428
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2925465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453160946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5788-353e65dc61faa11a865e8a7938a6ea63092b9144f6ce954158ed682df3ab87663</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzBo9-AdkwIPkMEl_f3gQJCRxJVGJEcVLUztbs3YyM712z0T33zubTRYVxFMf6qmXp-sl5Cmj-4xSftCmdp9zye09MmGK85IrJ--TCTWSloI5uUMe5XxJKXXOyIdkh1OtlXF0Qr58_DA9Dxcvi2mPCfpwjUXGpi6r2OWQe-z6YgkJmgabIrSwCN2iSLie9mmo-hC7ok6xLSDNQp8grYqrMi-hwsfkQQ1Nxie37y75dHx0cfimPH1_Mj18fVpWylhbCiVQq3mlWQ3AGFit0IJxwoJG0II6PnNMylpX6JRkyuJcWz6vBcys0Vrskleb3OUwa3Fejcajrl-m0TatfITg_5x04ZtfxGvPHVdSqzHgxW1Ait8HzL1vQ66waaDDOGRvraCSKir_SxppneBMrqWe_0VexiF14x08l0owTd0NtbehqhRzTlhvrRn162L9WKy_KXZkn_3-zS151-QIHGyAH6HB1b-T_Nn52V1kudlY9_xzuwHpymsjjPKf3514e_xWia-WeyZ-AcGwvFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453160946</pqid></control><display><type>article</type><title>SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lustig, Michael ; Pauly, John M.</creator><creatorcontrib>Lustig, Michael ; Pauly, John M.</creatorcontrib><description>A new approach to autocalibrating, coil‐by‐coil parallel imaging reconstruction, is presented. It is a generalized reconstruction framework based on self‐consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k‐space sampling patterns. The formulation can flexibly incorporate additional image priors such as off‐resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k‐space domain are presented. These are based on a projection over convex sets and conjugate gradient algorithms. Phantom and in vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off‐resonance correction and nonlinear ℓ1‐wavelet regularization are also demonstrated. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.22428</identifier><identifier>PMID: 20665790</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; autocalibration ; Calibration ; Cartesian coordinates ; compressed sensing ; Computational geometry ; Convexity ; GRAPPA ; Humans ; Image acquisition ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; In vivo methods and tests ; iterative reconstruction ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Optimization ; parallel imaging ; Phantoms, Imaging ; Regularization ; Reproducibility of Results ; Resonance ; SENSE ; Sensitivity and Specificity</subject><ispartof>Magnetic resonance in medicine, 2010-08, Vol.64 (2), p.457-471</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5788-353e65dc61faa11a865e8a7938a6ea63092b9144f6ce954158ed682df3ab87663</citedby><cites>FETCH-LOGICAL-c5788-353e65dc61faa11a865e8a7938a6ea63092b9144f6ce954158ed682df3ab87663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.22428$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.22428$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20665790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Pauly, John M.</creatorcontrib><title>SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>A new approach to autocalibrating, coil‐by‐coil parallel imaging reconstruction, is presented. It is a generalized reconstruction framework based on self‐consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k‐space sampling patterns. The formulation can flexibly incorporate additional image priors such as off‐resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k‐space domain are presented. These are based on a projection over convex sets and conjugate gradient algorithms. Phantom and in vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off‐resonance correction and nonlinear ℓ1‐wavelet regularization are also demonstrated. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>autocalibration</subject><subject>Calibration</subject><subject>Cartesian coordinates</subject><subject>compressed sensing</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>GRAPPA</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>In vivo methods and tests</subject><subject>iterative reconstruction</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Optimization</subject><subject>parallel imaging</subject><subject>Phantoms, Imaging</subject><subject>Regularization</subject><subject>Reproducibility of Results</subject><subject>Resonance</subject><subject>SENSE</subject><subject>Sensitivity and Specificity</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFEEQhhtRzBo9-AdkwIPkMEl_f3gQJCRxJVGJEcVLUztbs3YyM712z0T33zubTRYVxFMf6qmXp-sl5Cmj-4xSftCmdp9zye09MmGK85IrJ--TCTWSloI5uUMe5XxJKXXOyIdkh1OtlXF0Qr58_DA9Dxcvi2mPCfpwjUXGpi6r2OWQe-z6YgkJmgabIrSwCN2iSLie9mmo-hC7ok6xLSDNQp8grYqrMi-hwsfkQQ1Nxie37y75dHx0cfimPH1_Mj18fVpWylhbCiVQq3mlWQ3AGFit0IJxwoJG0II6PnNMylpX6JRkyuJcWz6vBcys0Vrskleb3OUwa3Fejcajrl-m0TatfITg_5x04ZtfxGvPHVdSqzHgxW1Ait8HzL1vQ66waaDDOGRvraCSKir_SxppneBMrqWe_0VexiF14x08l0owTd0NtbehqhRzTlhvrRn162L9WKy_KXZkn_3-zS151-QIHGyAH6HB1b-T_Nn52V1kudlY9_xzuwHpymsjjPKf3514e_xWia-WeyZ-AcGwvFU</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Lustig, Michael</creator><creator>Pauly, John M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space</title><author>Lustig, Michael ; Pauly, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5788-353e65dc61faa11a865e8a7938a6ea63092b9144f6ce954158ed682df3ab87663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>autocalibration</topic><topic>Calibration</topic><topic>Cartesian coordinates</topic><topic>compressed sensing</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>GRAPPA</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>In vivo methods and tests</topic><topic>iterative reconstruction</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Optimization</topic><topic>parallel imaging</topic><topic>Phantoms, Imaging</topic><topic>Regularization</topic><topic>Reproducibility of Results</topic><topic>Resonance</topic><topic>SENSE</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Pauly, John M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lustig, Michael</au><au>Pauly, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2010-08</date><risdate>2010</risdate><volume>64</volume><issue>2</issue><spage>457</spage><epage>471</epage><pages>457-471</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>A new approach to autocalibrating, coil‐by‐coil parallel imaging reconstruction, is presented. It is a generalized reconstruction framework based on self‐consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k‐space sampling patterns. The formulation can flexibly incorporate additional image priors such as off‐resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k‐space domain are presented. These are based on a projection over convex sets and conjugate gradient algorithms. Phantom and in vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off‐resonance correction and nonlinear ℓ1‐wavelet regularization are also demonstrated. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20665790</pmid><doi>10.1002/mrm.22428</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2010-08, Vol.64 (2), p.457-471
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2925465
source MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Algorithms
autocalibration
Calibration
Cartesian coordinates
compressed sensing
Computational geometry
Convexity
GRAPPA
Humans
Image acquisition
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
In vivo methods and tests
iterative reconstruction
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Optimization
parallel imaging
Phantoms, Imaging
Regularization
Reproducibility of Results
Resonance
SENSE
Sensitivity and Specificity
title SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPIRiT:%20Iterative%20self-consistent%20parallel%20imaging%20reconstruction%20from%20arbitrary%20k-space&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Lustig,%20Michael&rft.date=2010-08&rft.volume=64&rft.issue=2&rft.spage=457&rft.epage=471&rft.pages=457-471&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.22428&rft_dat=%3Cproquest_pubme%3E2453160946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453160946&rft_id=info:pmid/20665790&rfr_iscdi=true