Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell

One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems and synthetic biology 2010-06, Vol.4 (2), p.85-93
1. Verfasser: Murtas, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 2
container_start_page 85
container_title Systems and synthetic biology
container_volume 4
creator Murtas, Giovanni
description One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell.
doi_str_mv 10.1007/s11693-009-9048-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123470191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4071-8875c034a3ed7ff0baf6eb2913ed0a9fd61a269d213a382a3f2b07bcff6aac593</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxYnR2Fr9AG6UuHE1yoVhgI1J0_inSRMX2jVhGHiPZh6MMNOm314m89KqC1dc4HcO93IQeg3kAxAiPhaATrGGENUo0soGnqBTkII2nDH29KGm_AS9KOWGEC54y5-jE1CKi6o4Rf1lnF2OZsRjmMKAy32c966Egk0c8G2t7OjwLqe7eY9NPcVldhOe053JlXajb7KbchoWO4cUcfK46vEhxHCoptaN40v0zJuxuFfH9Qxdf_n88-Jbc_X96-XF-VVjWyKgkVJwS1hrmBuE96Q3vnM9VVD3xCg_dGBopwYKzDBJDfO0J6K33nfGWK7YGfq0-U5Lf3CDdXHOZtRTrp3ke51M0H_fxLDXu3SrqaKMKlkN3h8Ncvq1uDLrQyjrBCa6tBStoJO8pXQl3_1D3qRl_cWiRSuUAklIhWCDbE6lZOcfWgGi1_z0lp-u-ek1Pw1V8-bPGR4Vx8AqQDeg1Ku4c_nx5f-5vt1E3iRtdjkUff2DEmAEpAReR_8NM3ixTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747991800</pqid></control><display><type>article</type><title>Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Murtas, Giovanni</creator><creatorcontrib>Murtas, Giovanni</creatorcontrib><description>One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell.</description><identifier>ISSN: 1872-5325</identifier><identifier>EISSN: 1872-5333</identifier><identifier>DOI: 10.1007/s11693-009-9048-1</identifier><identifier>PMID: 19957048</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Cellular biology ; Computational Biology/Bioinformatics ; Enzymes ; Fatty acids ; Lipids ; Metabolomics ; Minimal cell ; Origin of life ; Research Article ; Self-reproduction ; Synthetic biology ; Systems Biology ; Vesicle</subject><ispartof>Systems and synthetic biology, 2010-06, Vol.4 (2), p.85-93</ispartof><rights>The Author(s) 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4071-8875c034a3ed7ff0baf6eb2913ed0a9fd61a269d213a382a3f2b07bcff6aac593</citedby><cites>FETCH-LOGICAL-c4071-8875c034a3ed7ff0baf6eb2913ed0a9fd61a269d213a382a3f2b07bcff6aac593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923298/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923298/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19957048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murtas, Giovanni</creatorcontrib><title>Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell</title><title>Systems and synthetic biology</title><addtitle>Syst Synth Biol</addtitle><addtitle>Syst Synth Biol</addtitle><description>One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cellular biology</subject><subject>Computational Biology/Bioinformatics</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Lipids</subject><subject>Metabolomics</subject><subject>Minimal cell</subject><subject>Origin of life</subject><subject>Research Article</subject><subject>Self-reproduction</subject><subject>Synthetic biology</subject><subject>Systems Biology</subject><subject>Vesicle</subject><issn>1872-5325</issn><issn>1872-5333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9vFSEUxYnR2Fr9AG6UuHE1yoVhgI1J0_inSRMX2jVhGHiPZh6MMNOm314m89KqC1dc4HcO93IQeg3kAxAiPhaATrGGENUo0soGnqBTkII2nDH29KGm_AS9KOWGEC54y5-jE1CKi6o4Rf1lnF2OZsRjmMKAy32c966Egk0c8G2t7OjwLqe7eY9NPcVldhOe053JlXajb7KbchoWO4cUcfK46vEhxHCoptaN40v0zJuxuFfH9Qxdf_n88-Jbc_X96-XF-VVjWyKgkVJwS1hrmBuE96Q3vnM9VVD3xCg_dGBopwYKzDBJDfO0J6K33nfGWK7YGfq0-U5Lf3CDdXHOZtRTrp3ke51M0H_fxLDXu3SrqaKMKlkN3h8Ncvq1uDLrQyjrBCa6tBStoJO8pXQl3_1D3qRl_cWiRSuUAklIhWCDbE6lZOcfWgGi1_z0lp-u-ek1Pw1V8-bPGR4Vx8AqQDeg1Ku4c_nx5f-5vt1E3iRtdjkUff2DEmAEpAReR_8NM3ixTA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Murtas, Giovanni</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201006</creationdate><title>Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell</title><author>Murtas, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4071-8875c034a3ed7ff0baf6eb2913ed0a9fd61a269d213a382a3f2b07bcff6aac593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cellular biology</topic><topic>Computational Biology/Bioinformatics</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Lipids</topic><topic>Metabolomics</topic><topic>Minimal cell</topic><topic>Origin of life</topic><topic>Research Article</topic><topic>Self-reproduction</topic><topic>Synthetic biology</topic><topic>Systems Biology</topic><topic>Vesicle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murtas, Giovanni</creatorcontrib><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Systems and synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murtas, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell</atitle><jtitle>Systems and synthetic biology</jtitle><stitle>Syst Synth Biol</stitle><addtitle>Syst Synth Biol</addtitle><date>2010-06</date><risdate>2010</risdate><volume>4</volume><issue>2</issue><spage>85</spage><epage>93</epage><pages>85-93</pages><issn>1872-5325</issn><eissn>1872-5333</eissn><abstract>One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>19957048</pmid><doi>10.1007/s11693-009-9048-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1872-5325
ispartof Systems and synthetic biology, 2010-06, Vol.4 (2), p.85-93
issn 1872-5325
1872-5333
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923298
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biomedical and Life Sciences
Biomedicine
Biotechnology
Cellular biology
Computational Biology/Bioinformatics
Enzymes
Fatty acids
Lipids
Metabolomics
Minimal cell
Origin of life
Research Article
Self-reproduction
Synthetic biology
Systems Biology
Vesicle
title Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20lipid%20synthesis%20and%20vesicle%20growth%20as%20a%20step%20toward%20self-reproduction%20of%20the%20minimal%20cell&rft.jtitle=Systems%20and%20synthetic%20biology&rft.au=Murtas,%20Giovanni&rft.date=2010-06&rft.volume=4&rft.issue=2&rft.spage=85&rft.epage=93&rft.pages=85-93&rft.issn=1872-5325&rft.eissn=1872-5333&rft_id=info:doi/10.1007/s11693-009-9048-1&rft_dat=%3Cproquest_pubme%3E2123470191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747991800&rft_id=info:pmid/19957048&rfr_iscdi=true