Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis
let-7a, a miRNA involved in differentiation, was known to be regulated by Lin-28. Now work reveals another factor that could control let-7a levels in vivo : hnRNP A1 binds to unprocessed pri-let-7a and inhibits its processing by Drosha. The inhibitory effect of hnRNP A1 is further shown to occur via...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2010-08, Vol.17 (8), p.1011-1018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1018 |
---|---|
container_issue | 8 |
container_start_page | 1011 |
container_title | Nature structural & molecular biology |
container_volume | 17 |
creator | Michlewski, Gracjan Cáceres, Javier F |
description | let-7a, a miRNA involved in differentiation, was known to be regulated by Lin-28. Now work reveals another factor that could control let-7a levels
in vivo
: hnRNP A1 binds to unprocessed pri-let-7a and inhibits its processing by Drosha. The inhibitory effect of hnRNP A1 is further shown to occur via antagonizing the binding of KSRP to pri-let-7a, which is known to promote biogenesis.
The pluripotency-promoting proteins Lin28a and Lin28b act as post-transcriptional repressors of let-7 miRNA biogenesis in undifferentiated embryonic stem cells. The levels of mature let-7a differ substantially in cells lacking Lin28 expression, indicating the existence of additional mechanism(s) of post-transcriptional regulation. Here, we present evidence supporting a role for heteronuclear ribonucleoprotein A1 (hnRNP A1) as a negative regulator of let-7a. HnRNP A1 binds the conserved terminal loop of pri-let-7a-1 and inhibits its processing by Drosha. Levels of mature let-7a negatively correlate with hnRNP A1 levels in somatic cell lines. Furthermore, hnRNP A1 depletion increased pri-let-7a-1 processing by cell extracts, whereas its ectopic expression decreased let-7a production
in vivo
. Finally, hnRNP A1 binding to let-7a interferes with the binding of KSRP, which is known to promote let-7a biogenesis. We propose that hnRNP A1 and KSRP have antagonistic roles in the post-transcriptional regulation of let-7a expression. |
doi_str_mv | 10.1038/nsmb.1874 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A234713664</galeid><sourcerecordid>A234713664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-7910bae3b23843c7f39b1c4f783d71d0f950b1ae4f689c55251d27286af411e23</originalsourceid><addsrcrecordid>eNplkV1rFTEQhoNYbK1e-Ack6IUonJrPTXIjHIofxaql6nXIZid7UvYkNdkV_Pfd5dSj1asE5plnZngRekLJCSVcv051255QrcQ9dESlkCtjtLy__xt-iB7WekUIk1LxB-iQkYYbrcUR-rROo-tzinWMHpc8AM4Bb9Ll5wu8ptilDn_8enmBY8LjBnCBfhrcGHNasAHGlXK4jbmHBDXWR-gguKHC49v3GH1_9_bb6YfV-Zf3Z6fr85WXnMw9hpLWAW8Z14J7FbhpqRdBad4p2pFgJGmpAxEabbyUTNKOKaYbFwSlwPgxerPzXk_tFjoPaSxusNclbl35ZbOL9m4lxY3t80_LDOOEiVnw4lZQ8o8J6mi3sXoYBpcgT9UqoY0QhC-jnv1DXuWppPk6q7hkQmu-6J7voN4NYGMKeZ7qF6VdMy4U5U2zUC93lC-51gJhvzAldgnSLkHaJciZffr3hXvyd3Iz8GoH1LmUeih_9vrfdgPcEKTl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>735248834</pqid></control><display><type>article</type><title>Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Michlewski, Gracjan ; Cáceres, Javier F</creator><creatorcontrib>Michlewski, Gracjan ; Cáceres, Javier F</creatorcontrib><description>let-7a, a miRNA involved in differentiation, was known to be regulated by Lin-28. Now work reveals another factor that could control let-7a levels
in vivo
: hnRNP A1 binds to unprocessed pri-let-7a and inhibits its processing by Drosha. The inhibitory effect of hnRNP A1 is further shown to occur via antagonizing the binding of KSRP to pri-let-7a, which is known to promote biogenesis.
The pluripotency-promoting proteins Lin28a and Lin28b act as post-transcriptional repressors of let-7 miRNA biogenesis in undifferentiated embryonic stem cells. The levels of mature let-7a differ substantially in cells lacking Lin28 expression, indicating the existence of additional mechanism(s) of post-transcriptional regulation. Here, we present evidence supporting a role for heteronuclear ribonucleoprotein A1 (hnRNP A1) as a negative regulator of let-7a. HnRNP A1 binds the conserved terminal loop of pri-let-7a-1 and inhibits its processing by Drosha. Levels of mature let-7a negatively correlate with hnRNP A1 levels in somatic cell lines. Furthermore, hnRNP A1 depletion increased pri-let-7a-1 processing by cell extracts, whereas its ectopic expression decreased let-7a production
in vivo
. Finally, hnRNP A1 binding to let-7a interferes with the binding of KSRP, which is known to promote let-7a biogenesis. We propose that hnRNP A1 and KSRP have antagonistic roles in the post-transcriptional regulation of let-7a expression.</description><identifier>ISSN: 1545-9993</identifier><identifier>ISSN: 1545-9985</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.1874</identifier><identifier>PMID: 20639884</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/200 ; 631/337/1645 ; 631/337/384/331 ; 631/45/535 ; Base Sequence ; Binding sites ; Binding, Competitive ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell Line, Tumor ; DNA Footprinting ; Gene Expression Regulation, Neoplastic ; Genetic regulation ; Green Fluorescent Proteins - metabolism ; Heterogeneous Nuclear Ribonucleoprotein A1 ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B - genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism ; Humans ; Life Sciences ; Membrane Biology ; MicroRNA ; MicroRNAs - biosynthesis ; MicroRNAs - chemistry ; MicroRNAs - genetics ; Models, Biological ; Molecular biology ; Molecular Sequence Data ; Molecular structure ; Nucleic Acid Conformation ; Physiological aspects ; Properties ; Protein Binding ; Protein Structure ; Proteins ; Recombinant Fusion Proteins - metabolism ; Ribonuclease III - metabolism ; RNA processing ; RNA Processing, Post-Transcriptional ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Stem cells ; Trans-Activators - genetics ; Trans-Activators - metabolism</subject><ispartof>Nature structural & molecular biology, 2010-08, Vol.17 (8), p.1011-1018</ispartof><rights>Springer Nature America, Inc. 2010</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-7910bae3b23843c7f39b1c4f783d71d0f950b1ae4f689c55251d27286af411e23</citedby><cites>FETCH-LOGICAL-c530t-7910bae3b23843c7f39b1c4f783d71d0f950b1ae4f689c55251d27286af411e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.1874$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.1874$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20639884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michlewski, Gracjan</creatorcontrib><creatorcontrib>Cáceres, Javier F</creatorcontrib><title>Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>let-7a, a miRNA involved in differentiation, was known to be regulated by Lin-28. Now work reveals another factor that could control let-7a levels
in vivo
: hnRNP A1 binds to unprocessed pri-let-7a and inhibits its processing by Drosha. The inhibitory effect of hnRNP A1 is further shown to occur via antagonizing the binding of KSRP to pri-let-7a, which is known to promote biogenesis.
The pluripotency-promoting proteins Lin28a and Lin28b act as post-transcriptional repressors of let-7 miRNA biogenesis in undifferentiated embryonic stem cells. The levels of mature let-7a differ substantially in cells lacking Lin28 expression, indicating the existence of additional mechanism(s) of post-transcriptional regulation. Here, we present evidence supporting a role for heteronuclear ribonucleoprotein A1 (hnRNP A1) as a negative regulator of let-7a. HnRNP A1 binds the conserved terminal loop of pri-let-7a-1 and inhibits its processing by Drosha. Levels of mature let-7a negatively correlate with hnRNP A1 levels in somatic cell lines. Furthermore, hnRNP A1 depletion increased pri-let-7a-1 processing by cell extracts, whereas its ectopic expression decreased let-7a production
in vivo
. Finally, hnRNP A1 binding to let-7a interferes with the binding of KSRP, which is known to promote let-7a biogenesis. We propose that hnRNP A1 and KSRP have antagonistic roles in the post-transcriptional regulation of let-7a expression.</description><subject>631/208/200</subject><subject>631/337/1645</subject><subject>631/337/384/331</subject><subject>631/45/535</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Binding, Competitive</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Line, Tumor</subject><subject>DNA Footprinting</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic regulation</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Heterogeneous Nuclear Ribonucleoprotein A1</subject><subject>Heterogeneous-Nuclear Ribonucleoprotein Group A-B - genetics</subject><subject>Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>MicroRNA</subject><subject>MicroRNAs - biosynthesis</subject><subject>MicroRNAs - chemistry</subject><subject>MicroRNAs - genetics</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Nucleic Acid Conformation</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Ribonuclease III - metabolism</subject><subject>RNA processing</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Stem cells</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><issn>1545-9993</issn><issn>1545-9985</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkV1rFTEQhoNYbK1e-Ack6IUonJrPTXIjHIofxaql6nXIZid7UvYkNdkV_Pfd5dSj1asE5plnZngRekLJCSVcv051255QrcQ9dESlkCtjtLy__xt-iB7WekUIk1LxB-iQkYYbrcUR-rROo-tzinWMHpc8AM4Bb9Ll5wu8ptilDn_8enmBY8LjBnCBfhrcGHNasAHGlXK4jbmHBDXWR-gguKHC49v3GH1_9_bb6YfV-Zf3Z6fr85WXnMw9hpLWAW8Z14J7FbhpqRdBad4p2pFgJGmpAxEabbyUTNKOKaYbFwSlwPgxerPzXk_tFjoPaSxusNclbl35ZbOL9m4lxY3t80_LDOOEiVnw4lZQ8o8J6mi3sXoYBpcgT9UqoY0QhC-jnv1DXuWppPk6q7hkQmu-6J7voN4NYGMKeZ7qF6VdMy4U5U2zUC93lC-51gJhvzAldgnSLkHaJciZffr3hXvyd3Iz8GoH1LmUeih_9vrfdgPcEKTl</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Michlewski, Gracjan</creator><creator>Cáceres, Javier F</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis</title><author>Michlewski, Gracjan ; Cáceres, Javier F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-7910bae3b23843c7f39b1c4f783d71d0f950b1ae4f689c55251d27286af411e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/208/200</topic><topic>631/337/1645</topic><topic>631/337/384/331</topic><topic>631/45/535</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Binding, Competitive</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Line, Tumor</topic><topic>DNA Footprinting</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic regulation</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Heterogeneous Nuclear Ribonucleoprotein A1</topic><topic>Heterogeneous-Nuclear Ribonucleoprotein Group A-B - genetics</topic><topic>Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>MicroRNA</topic><topic>MicroRNAs - biosynthesis</topic><topic>MicroRNAs - chemistry</topic><topic>MicroRNAs - genetics</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Nucleic Acid Conformation</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Ribonuclease III - metabolism</topic><topic>RNA processing</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Stem cells</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michlewski, Gracjan</creatorcontrib><creatorcontrib>Cáceres, Javier F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michlewski, Gracjan</au><au>Cáceres, Javier F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>17</volume><issue>8</issue><spage>1011</spage><epage>1018</epage><pages>1011-1018</pages><issn>1545-9993</issn><issn>1545-9985</issn><eissn>1545-9985</eissn><abstract>let-7a, a miRNA involved in differentiation, was known to be regulated by Lin-28. Now work reveals another factor that could control let-7a levels
in vivo
: hnRNP A1 binds to unprocessed pri-let-7a and inhibits its processing by Drosha. The inhibitory effect of hnRNP A1 is further shown to occur via antagonizing the binding of KSRP to pri-let-7a, which is known to promote biogenesis.
The pluripotency-promoting proteins Lin28a and Lin28b act as post-transcriptional repressors of let-7 miRNA biogenesis in undifferentiated embryonic stem cells. The levels of mature let-7a differ substantially in cells lacking Lin28 expression, indicating the existence of additional mechanism(s) of post-transcriptional regulation. Here, we present evidence supporting a role for heteronuclear ribonucleoprotein A1 (hnRNP A1) as a negative regulator of let-7a. HnRNP A1 binds the conserved terminal loop of pri-let-7a-1 and inhibits its processing by Drosha. Levels of mature let-7a negatively correlate with hnRNP A1 levels in somatic cell lines. Furthermore, hnRNP A1 depletion increased pri-let-7a-1 processing by cell extracts, whereas its ectopic expression decreased let-7a production
in vivo
. Finally, hnRNP A1 binding to let-7a interferes with the binding of KSRP, which is known to promote let-7a biogenesis. We propose that hnRNP A1 and KSRP have antagonistic roles in the post-transcriptional regulation of let-7a expression.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>20639884</pmid><doi>10.1038/nsmb.1874</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2010-08, Vol.17 (8), p.1011-1018 |
issn | 1545-9993 1545-9985 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923024 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/208/200 631/337/1645 631/337/384/331 631/45/535 Base Sequence Binding sites Binding, Competitive Biochemistry Biological Microscopy Biomedical and Life Sciences Cell Line, Tumor DNA Footprinting Gene Expression Regulation, Neoplastic Genetic regulation Green Fluorescent Proteins - metabolism Heterogeneous Nuclear Ribonucleoprotein A1 Heterogeneous-Nuclear Ribonucleoprotein Group A-B - genetics Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism Humans Life Sciences Membrane Biology MicroRNA MicroRNAs - biosynthesis MicroRNAs - chemistry MicroRNAs - genetics Models, Biological Molecular biology Molecular Sequence Data Molecular structure Nucleic Acid Conformation Physiological aspects Properties Protein Binding Protein Structure Proteins Recombinant Fusion Proteins - metabolism Ribonuclease III - metabolism RNA processing RNA Processing, Post-Transcriptional RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Stem cells Trans-Activators - genetics Trans-Activators - metabolism |
title | Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antagonistic%20role%20of%20hnRNP%20A1%20and%20KSRP%20in%20the%20regulation%20of%20let-7a%20biogenesis&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Michlewski,%20Gracjan&rft.date=2010-08-01&rft.volume=17&rft.issue=8&rft.spage=1011&rft.epage=1018&rft.pages=1011-1018&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.1874&rft_dat=%3Cgale_pubme%3EA234713664%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=735248834&rft_id=info:pmid/20639884&rft_galeid=A234713664&rfr_iscdi=true |