Genome-wide maps of chromatin state in pluripotent and lineage-committed cells

We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2007-08, Vol.448 (7153), p.553-560
Hauptverfasser: Mikkelsen, Tarjei S., Ku, Manching, Jaffe, David B., Issac, Biju, Lieberman, Erez, Giannoukos, Georgia, Alvarez, Pablo, Brockman, William, Kim, Tae-Kyung, Koche, Richard P., Lee, William, Mendenhall, Eric, O’Donovan, Aisling, Presser, Aviva, Russ, Carsten, Xie, Xiaohui, Meissner, Alexander, Wernig, Marius, Jaenisch, Rudolf, Nusbaum, Chad, Lander, Eric S., Bernstein, Bradley E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 7153
container_start_page 553
container_title Nature
container_volume 448
creator Mikkelsen, Tarjei S.
Ku, Manching
Jaffe, David B.
Issac, Biju
Lieberman, Erez
Giannoukos, Georgia
Alvarez, Pablo
Brockman, William
Kim, Tae-Kyung
Koche, Richard P.
Lee, William
Mendenhall, Eric
O’Donovan, Aisling
Presser, Aviva
Russ, Carsten
Xie, Xiaohui
Meissner, Alexander
Wernig, Marius
Jaenisch, Rudolf
Nusbaum, Chad
Lander, Eric S.
Bernstein, Bradley E.
description We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Chromatin profiling Although they contain the same set of genes, different cell types in a multicellular organism maintain very different behaviours. These cell states are thought to be related to chromatin state — that is, modifications to histones and other proteins that package the genome. Single-molecule sequencing technology has now been used to construct chromatin-state maps for mouse embryonic stem cells and two other more developmentally advanced cell types, revealing the genome-wide distribution of important chromatin modifications. The study provides pointers for the use of chromatin profiling on mammalian cell populations, including those of abnormal cells, such as cancer. Single-molecule-based sequencing technology is applied to generate genome-wide maps of chromatin modifications in mammalian cells. Histone marks can discriminate genes that are active, poised for activation, or stably repressed and therefore reflect cell state and developmental potential.
doi_str_mv 10.1038/nature06008
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2921165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185195142</galeid><sourcerecordid>A185195142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c777t-71f0365d6cd708ef28fbc19979adc7b2a4365c87e85f38eab969710c5cc7b4ed3</originalsourceid><addsrcrecordid>eNqF0u9r1DAYB_Aiijunr3wvRVAU7Uza_Oob4Th0DsYEnfgy5NKnXUabdEm66X9vjju8OzmVUlr6fPJNnyRZ9hSjE4wq8c6qOHlADCFxL5thwllBmOD3sxlCpSiQqNhR9iiEa4QQxZw8zI4wZ6giHM-yi1OwboDizjSQD2oMuWtzfeXdoKKxeYgqQp5exn7yZnQRbMyVbfLeWFAdFNoNg4kRmlxD34fH2YNW9QGebJ7H2bePHy4Xn4rzz6dni_l5oTnnseC4RRWjDdMNRwLaUrRLjeua16rRfFkqkqpacBC0rQSoZc1qjpGmOlUJNNVx9n6dO07LARqdfsurXo7eDMr_lE4ZuV-x5kp27laWdYkxoyng5SbAu5sJQpSDCasWlAU3BckExpzS6r-wRCVP9yrx1T8h5pwxwgnhiT7_g167ydu0YCmOUFqyskyoWKNO9SCNbV1qRHdgIfXjLLQmfZ5jQXFNMSm3oXtej-ZG7qKTAyhdDQxGH0x9vTcgmQg_YqemEOTZ1y_79s3f7fzy--LioNbeheCh_b17GMnVwZY7BzvpZ7sbvrWbk5zAiw1QQau-9cpqE7ZO1KSm9Wrat2sXUsl24Ldrf2jeX1fXDS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204552622</pqid></control><display><type>article</type><title>Genome-wide maps of chromatin state in pluripotent and lineage-committed cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Mikkelsen, Tarjei S. ; Ku, Manching ; Jaffe, David B. ; Issac, Biju ; Lieberman, Erez ; Giannoukos, Georgia ; Alvarez, Pablo ; Brockman, William ; Kim, Tae-Kyung ; Koche, Richard P. ; Lee, William ; Mendenhall, Eric ; O’Donovan, Aisling ; Presser, Aviva ; Russ, Carsten ; Xie, Xiaohui ; Meissner, Alexander ; Wernig, Marius ; Jaenisch, Rudolf ; Nusbaum, Chad ; Lander, Eric S. ; Bernstein, Bradley E.</creator><creatorcontrib>Mikkelsen, Tarjei S. ; Ku, Manching ; Jaffe, David B. ; Issac, Biju ; Lieberman, Erez ; Giannoukos, Georgia ; Alvarez, Pablo ; Brockman, William ; Kim, Tae-Kyung ; Koche, Richard P. ; Lee, William ; Mendenhall, Eric ; O’Donovan, Aisling ; Presser, Aviva ; Russ, Carsten ; Xie, Xiaohui ; Meissner, Alexander ; Wernig, Marius ; Jaenisch, Rudolf ; Nusbaum, Chad ; Lander, Eric S. ; Bernstein, Bradley E.</creatorcontrib><description>We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Chromatin profiling Although they contain the same set of genes, different cell types in a multicellular organism maintain very different behaviours. These cell states are thought to be related to chromatin state — that is, modifications to histones and other proteins that package the genome. Single-molecule sequencing technology has now been used to construct chromatin-state maps for mouse embryonic stem cells and two other more developmentally advanced cell types, revealing the genome-wide distribution of important chromatin modifications. The study provides pointers for the use of chromatin profiling on mammalian cell populations, including those of abnormal cells, such as cancer. Single-molecule-based sequencing technology is applied to generate genome-wide maps of chromatin modifications in mammalian cells. Histone marks can discriminate genes that are active, poised for activation, or stably repressed and therefore reflect cell state and developmental potential.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature06008</identifier><identifier>PMID: 17603471</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alleles ; Animals ; Biological and medical sciences ; Cell Lineage - genetics ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin. Chromosome ; CpG Islands - genetics ; Deoxyribonucleic acid ; DNA ; Fibroblasts ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Genome - genetics ; Genomic Imprinting ; Genomics ; Histones - metabolism ; Humanities and Social Sciences ; Male ; Mammals ; Methylation ; Mice ; Molecular and cellular biology ; Molecular genetics ; multidisciplinary ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Promoter Regions, Genetic - genetics ; Research methodology ; Rodents ; Science ; Science (multidisciplinary) ; Stem cells ; Transcription, Genetic - genetics</subject><ispartof>Nature, 2007-08, Vol.448 (7153), p.553-560</ispartof><rights>Springer Nature Limited 2007</rights><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2, 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c777t-71f0365d6cd708ef28fbc19979adc7b2a4365c87e85f38eab969710c5cc7b4ed3</citedby><cites>FETCH-LOGICAL-c777t-71f0365d6cd708ef28fbc19979adc7b2a4365c87e85f38eab969710c5cc7b4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature06008$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature06008$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18949592$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17603471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikkelsen, Tarjei S.</creatorcontrib><creatorcontrib>Ku, Manching</creatorcontrib><creatorcontrib>Jaffe, David B.</creatorcontrib><creatorcontrib>Issac, Biju</creatorcontrib><creatorcontrib>Lieberman, Erez</creatorcontrib><creatorcontrib>Giannoukos, Georgia</creatorcontrib><creatorcontrib>Alvarez, Pablo</creatorcontrib><creatorcontrib>Brockman, William</creatorcontrib><creatorcontrib>Kim, Tae-Kyung</creatorcontrib><creatorcontrib>Koche, Richard P.</creatorcontrib><creatorcontrib>Lee, William</creatorcontrib><creatorcontrib>Mendenhall, Eric</creatorcontrib><creatorcontrib>O’Donovan, Aisling</creatorcontrib><creatorcontrib>Presser, Aviva</creatorcontrib><creatorcontrib>Russ, Carsten</creatorcontrib><creatorcontrib>Xie, Xiaohui</creatorcontrib><creatorcontrib>Meissner, Alexander</creatorcontrib><creatorcontrib>Wernig, Marius</creatorcontrib><creatorcontrib>Jaenisch, Rudolf</creatorcontrib><creatorcontrib>Nusbaum, Chad</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><creatorcontrib>Bernstein, Bradley E.</creatorcontrib><title>Genome-wide maps of chromatin state in pluripotent and lineage-committed cells</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Chromatin profiling Although they contain the same set of genes, different cell types in a multicellular organism maintain very different behaviours. These cell states are thought to be related to chromatin state — that is, modifications to histones and other proteins that package the genome. Single-molecule sequencing technology has now been used to construct chromatin-state maps for mouse embryonic stem cells and two other more developmentally advanced cell types, revealing the genome-wide distribution of important chromatin modifications. The study provides pointers for the use of chromatin profiling on mammalian cell populations, including those of abnormal cells, such as cancer. Single-molecule-based sequencing technology is applied to generate genome-wide maps of chromatin modifications in mammalian cells. Histone marks can discriminate genes that are active, poised for activation, or stably repressed and therefore reflect cell state and developmental potential.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Lineage - genetics</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin. Chromosome</subject><subject>CpG Islands - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fibroblasts</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genome - genetics</subject><subject>Genomic Imprinting</subject><subject>Genomics</subject><subject>Histones - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mammals</subject><subject>Methylation</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>multidisciplinary</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Research methodology</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Transcription, Genetic - genetics</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0u9r1DAYB_Aiijunr3wvRVAU7Uza_Oob4Th0DsYEnfgy5NKnXUabdEm66X9vjju8OzmVUlr6fPJNnyRZ9hSjE4wq8c6qOHlADCFxL5thwllBmOD3sxlCpSiQqNhR9iiEa4QQxZw8zI4wZ6giHM-yi1OwboDizjSQD2oMuWtzfeXdoKKxeYgqQp5exn7yZnQRbMyVbfLeWFAdFNoNg4kRmlxD34fH2YNW9QGebJ7H2bePHy4Xn4rzz6dni_l5oTnnseC4RRWjDdMNRwLaUrRLjeua16rRfFkqkqpacBC0rQSoZc1qjpGmOlUJNNVx9n6dO07LARqdfsurXo7eDMr_lE4ZuV-x5kp27laWdYkxoyng5SbAu5sJQpSDCasWlAU3BckExpzS6r-wRCVP9yrx1T8h5pwxwgnhiT7_g167ydu0YCmOUFqyskyoWKNO9SCNbV1qRHdgIfXjLLQmfZ5jQXFNMSm3oXtej-ZG7qKTAyhdDQxGH0x9vTcgmQg_YqemEOTZ1y_79s3f7fzy--LioNbeheCh_b17GMnVwZY7BzvpZ7sbvrWbk5zAiw1QQau-9cpqE7ZO1KSm9Wrat2sXUsl24Ldrf2jeX1fXDS4</recordid><startdate>20070802</startdate><enddate>20070802</enddate><creator>Mikkelsen, Tarjei S.</creator><creator>Ku, Manching</creator><creator>Jaffe, David B.</creator><creator>Issac, Biju</creator><creator>Lieberman, Erez</creator><creator>Giannoukos, Georgia</creator><creator>Alvarez, Pablo</creator><creator>Brockman, William</creator><creator>Kim, Tae-Kyung</creator><creator>Koche, Richard P.</creator><creator>Lee, William</creator><creator>Mendenhall, Eric</creator><creator>O’Donovan, Aisling</creator><creator>Presser, Aviva</creator><creator>Russ, Carsten</creator><creator>Xie, Xiaohui</creator><creator>Meissner, Alexander</creator><creator>Wernig, Marius</creator><creator>Jaenisch, Rudolf</creator><creator>Nusbaum, Chad</creator><creator>Lander, Eric S.</creator><creator>Bernstein, Bradley E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070802</creationdate><title>Genome-wide maps of chromatin state in pluripotent and lineage-committed cells</title><author>Mikkelsen, Tarjei S. ; Ku, Manching ; Jaffe, David B. ; Issac, Biju ; Lieberman, Erez ; Giannoukos, Georgia ; Alvarez, Pablo ; Brockman, William ; Kim, Tae-Kyung ; Koche, Richard P. ; Lee, William ; Mendenhall, Eric ; O’Donovan, Aisling ; Presser, Aviva ; Russ, Carsten ; Xie, Xiaohui ; Meissner, Alexander ; Wernig, Marius ; Jaenisch, Rudolf ; Nusbaum, Chad ; Lander, Eric S. ; Bernstein, Bradley E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c777t-71f0365d6cd708ef28fbc19979adc7b2a4365c87e85f38eab969710c5cc7b4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Lineage - genetics</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin. Chromosome</topic><topic>CpG Islands - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fibroblasts</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genome - genetics</topic><topic>Genomic Imprinting</topic><topic>Genomics</topic><topic>Histones - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mammals</topic><topic>Methylation</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>multidisciplinary</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Research methodology</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikkelsen, Tarjei S.</creatorcontrib><creatorcontrib>Ku, Manching</creatorcontrib><creatorcontrib>Jaffe, David B.</creatorcontrib><creatorcontrib>Issac, Biju</creatorcontrib><creatorcontrib>Lieberman, Erez</creatorcontrib><creatorcontrib>Giannoukos, Georgia</creatorcontrib><creatorcontrib>Alvarez, Pablo</creatorcontrib><creatorcontrib>Brockman, William</creatorcontrib><creatorcontrib>Kim, Tae-Kyung</creatorcontrib><creatorcontrib>Koche, Richard P.</creatorcontrib><creatorcontrib>Lee, William</creatorcontrib><creatorcontrib>Mendenhall, Eric</creatorcontrib><creatorcontrib>O’Donovan, Aisling</creatorcontrib><creatorcontrib>Presser, Aviva</creatorcontrib><creatorcontrib>Russ, Carsten</creatorcontrib><creatorcontrib>Xie, Xiaohui</creatorcontrib><creatorcontrib>Meissner, Alexander</creatorcontrib><creatorcontrib>Wernig, Marius</creatorcontrib><creatorcontrib>Jaenisch, Rudolf</creatorcontrib><creatorcontrib>Nusbaum, Chad</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><creatorcontrib>Bernstein, Bradley E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikkelsen, Tarjei S.</au><au>Ku, Manching</au><au>Jaffe, David B.</au><au>Issac, Biju</au><au>Lieberman, Erez</au><au>Giannoukos, Georgia</au><au>Alvarez, Pablo</au><au>Brockman, William</au><au>Kim, Tae-Kyung</au><au>Koche, Richard P.</au><au>Lee, William</au><au>Mendenhall, Eric</au><au>O’Donovan, Aisling</au><au>Presser, Aviva</au><au>Russ, Carsten</au><au>Xie, Xiaohui</au><au>Meissner, Alexander</au><au>Wernig, Marius</au><au>Jaenisch, Rudolf</au><au>Nusbaum, Chad</au><au>Lander, Eric S.</au><au>Bernstein, Bradley E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide maps of chromatin state in pluripotent and lineage-committed cells</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2007-08-02</date><risdate>2007</risdate><volume>448</volume><issue>7153</issue><spage>553</spage><epage>560</epage><pages>553-560</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Chromatin profiling Although they contain the same set of genes, different cell types in a multicellular organism maintain very different behaviours. These cell states are thought to be related to chromatin state — that is, modifications to histones and other proteins that package the genome. Single-molecule sequencing technology has now been used to construct chromatin-state maps for mouse embryonic stem cells and two other more developmentally advanced cell types, revealing the genome-wide distribution of important chromatin modifications. The study provides pointers for the use of chromatin profiling on mammalian cell populations, including those of abnormal cells, such as cancer. Single-molecule-based sequencing technology is applied to generate genome-wide maps of chromatin modifications in mammalian cells. Histone marks can discriminate genes that are active, poised for activation, or stably repressed and therefore reflect cell state and developmental potential.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17603471</pmid><doi>10.1038/nature06008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2007-08, Vol.448 (7153), p.553-560
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2921165
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Alleles
Animals
Biological and medical sciences
Cell Lineage - genetics
Chromatin
Chromatin - genetics
Chromatin - metabolism
Chromatin. Chromosome
CpG Islands - genetics
Deoxyribonucleic acid
DNA
Fibroblasts
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
Genome - genetics
Genomic Imprinting
Genomics
Histones - metabolism
Humanities and Social Sciences
Male
Mammals
Methylation
Mice
Molecular and cellular biology
Molecular genetics
multidisciplinary
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Promoter Regions, Genetic - genetics
Research methodology
Rodents
Science
Science (multidisciplinary)
Stem cells
Transcription, Genetic - genetics
title Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20maps%20of%20chromatin%20state%20in%20pluripotent%20and%20lineage-committed%20cells&rft.jtitle=Nature&rft.au=Mikkelsen,%20Tarjei%20S.&rft.date=2007-08-02&rft.volume=448&rft.issue=7153&rft.spage=553&rft.epage=560&rft.pages=553-560&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06008&rft_dat=%3Cgale_pubme%3EA185195142%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204552622&rft_id=info:pmid/17603471&rft_galeid=A185195142&rfr_iscdi=true