Relative risk estimated from the ratio of two median unbiased estimates

Clinical trials often include binary end points. In some cases, no successes are observed and the usual large sample estimates of relative risk are undefined. The paper proposes an estimator for relative risk based on the median unbiased estimator. The relative risk estimator proposed is well define...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied statistics 2010-08, Vol.59 (4), p.657-671
Hauptverfasser: Carter, Rickey E., Lin, Yan, Lipsitz, Stuart R., Newcombe, Robert G., Hermayer, Kathie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 4
container_start_page 657
container_title Applied statistics
container_volume 59
creator Carter, Rickey E.
Lin, Yan
Lipsitz, Stuart R.
Newcombe, Robert G.
Hermayer, Kathie L.
description Clinical trials often include binary end points. In some cases, no successes are observed and the usual large sample estimates of relative risk are undefined. The paper proposes an estimator for relative risk based on the median unbiased estimator. The relative risk estimator proposed is well defined and performs satisfactorily for a wide range of data configurations. To facilitate the use of the estimator, a deterministic bootstrap confidence interval is also proposed, and an SAS macro is available to perform the necessary calculations. An on-going randomized clinical trial motivated the development of the estimator and is used to illustrate the approach.
doi_str_mv 10.1111/j.1467-9876.2010.00711.x
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2918902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40783096</jstor_id><sourcerecordid>40783096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7551-af8f45fc2c06895e6ebd46b677ba1ccec8299d8aff14ba0601adb0bdfc893cb23</originalsourceid><addsrcrecordid>eNqNktuO0zAQhiMEYsvCI4AiJAQ3KXbi48UioQpa2NUidTlcWo7j0HTTuNhpt317Jk03HC5YLE0i-f_-ycxkoijGaIzhvF6OMWE8kYKzcYrgFiGO8Xh3LxoNwv1ohFBGE5lSchI9CmGJ4GBEHkYnaYdTjEfRdG5r3VZbG_sqXMc2tNVKt7aIS-9WcbuAe5Bd7Mq4vXHxyhaVbuJNk1c6AHXLh8fRg1LXwT45vk-jL-_ffZ7MkotP0w-TtxeJ4ZTiRJeiJLQ0qUFMSGqZzQvCcsZ5rrEx1ohUykLossQk14ghrIsc5UVphMxMnman0Zs-73qTQzHGNq3XtVp7KMPvldOV-lNpqoX67rYqlVhI1CV4eUzg3Y8N1K9WVTC2rnVj3SYoiRnFhDB0J8kpEZxLKYB89U8Si5RhyhiTd6OM44xkMiWAPv8LXbqNb2C6iqdAcIm7dkQPGe9C8LYcRoGR6nZFLVW3EqpbCdXtijrsitqB9WNv9XZtzeDLa710PgSjtirTVMJjD3GwZjDeTBOINQSjXEG5atGuINmz3__LkO120wB4cQR0MLouvW5MFX5xGSIckW5AZz13U9V2_9_dqPnV1YQfvvO09y9D6_zgJ4iLDEkGetLrVWjtbtC1v4ZeMk7Vt8upmsnzr2g-u1Tn2U_QHwxF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>723927912</pqid></control><display><type>article</type><title>Relative risk estimated from the ratio of two median unbiased estimates</title><source>RePEc</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Carter, Rickey E. ; Lin, Yan ; Lipsitz, Stuart R. ; Newcombe, Robert G. ; Hermayer, Kathie L.</creator><creatorcontrib>Carter, Rickey E. ; Lin, Yan ; Lipsitz, Stuart R. ; Newcombe, Robert G. ; Hermayer, Kathie L.</creatorcontrib><description>Clinical trials often include binary end points. In some cases, no successes are observed and the usual large sample estimates of relative risk are undefined. The paper proposes an estimator for relative risk based on the median unbiased estimator. The relative risk estimator proposed is well defined and performs satisfactorily for a wide range of data configurations. To facilitate the use of the estimator, a deterministic bootstrap confidence interval is also proposed, and an SAS macro is available to perform the necessary calculations. An on-going randomized clinical trial motivated the development of the estimator and is used to illustrate the approach.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/j.1467-9876.2010.00711.x</identifier><identifier>PMID: 20711511</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analytical estimating ; Applications ; Applied statistics ; Binomial distribution ; Binomials ; Biology, psychology, social sciences ; Bootstrap method ; Clinical interviews ; Clinical trials ; Combinatorics ; Combinatorics. Ordered structures ; Confidence interval ; Confidence intervals ; Coverage probability ; Designs and configurations ; Estimates ; Estimating techniques ; Estimation ; Estimators ; Exact sciences and technology ; Interval estimators ; Mathematical analysis ; Mathematics ; Median unbiased estimator ; Medical sciences ; Null hypothesis ; Parametric inference ; Point estimators ; Probability ; Probability and statistics ; Ratio scales ; Relative risk ; Risk ; Risk management ; Sample size ; Samples ; Sciences and techniques of general use ; Shrinkage ; Shrinkage estimator ; Statistical analysis ; Statistics ; Studies ; Unbiased estimators</subject><ispartof>Applied statistics, 2010-08, Vol.59 (4), p.657-671</ispartof><rights>2010 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2010 Royal Statistical Society</rights><rights>2015 INIST-CNRS</rights><rights>2010 The Royal Statistical Society and Blackwell Publishing Ltd</rights><rights>Copyright 2009, Mayo Foundation for Medical Education and Research 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7551-af8f45fc2c06895e6ebd46b677ba1ccec8299d8aff14ba0601adb0bdfc893cb23</citedby><cites>FETCH-LOGICAL-c7551-af8f45fc2c06895e6ebd46b677ba1ccec8299d8aff14ba0601adb0bdfc893cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40783096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40783096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,782,786,805,834,887,1419,4010,27931,27932,45581,45582,58024,58028,58257,58261</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23047049$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20711511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssc/v_3a59_3ay_3a2010_3ai_3a4_3ap_3a657-671.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Rickey E.</creatorcontrib><creatorcontrib>Lin, Yan</creatorcontrib><creatorcontrib>Lipsitz, Stuart R.</creatorcontrib><creatorcontrib>Newcombe, Robert G.</creatorcontrib><creatorcontrib>Hermayer, Kathie L.</creatorcontrib><title>Relative risk estimated from the ratio of two median unbiased estimates</title><title>Applied statistics</title><addtitle>J R Stat Soc Ser C Appl Stat</addtitle><description>Clinical trials often include binary end points. In some cases, no successes are observed and the usual large sample estimates of relative risk are undefined. The paper proposes an estimator for relative risk based on the median unbiased estimator. The relative risk estimator proposed is well defined and performs satisfactorily for a wide range of data configurations. To facilitate the use of the estimator, a deterministic bootstrap confidence interval is also proposed, and an SAS macro is available to perform the necessary calculations. An on-going randomized clinical trial motivated the development of the estimator and is used to illustrate the approach.</description><subject>Analytical estimating</subject><subject>Applications</subject><subject>Applied statistics</subject><subject>Binomial distribution</subject><subject>Binomials</subject><subject>Biology, psychology, social sciences</subject><subject>Bootstrap method</subject><subject>Clinical interviews</subject><subject>Clinical trials</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>Coverage probability</subject><subject>Designs and configurations</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Interval estimators</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Median unbiased estimator</subject><subject>Medical sciences</subject><subject>Null hypothesis</subject><subject>Parametric inference</subject><subject>Point estimators</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Ratio scales</subject><subject>Relative risk</subject><subject>Risk</subject><subject>Risk management</subject><subject>Sample size</subject><subject>Samples</subject><subject>Sciences and techniques of general use</subject><subject>Shrinkage</subject><subject>Shrinkage estimator</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Studies</subject><subject>Unbiased estimators</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNktuO0zAQhiMEYsvCI4AiJAQ3KXbi48UioQpa2NUidTlcWo7j0HTTuNhpt317Jk03HC5YLE0i-f_-ycxkoijGaIzhvF6OMWE8kYKzcYrgFiGO8Xh3LxoNwv1ohFBGE5lSchI9CmGJ4GBEHkYnaYdTjEfRdG5r3VZbG_sqXMc2tNVKt7aIS-9WcbuAe5Bd7Mq4vXHxyhaVbuJNk1c6AHXLh8fRg1LXwT45vk-jL-_ffZ7MkotP0w-TtxeJ4ZTiRJeiJLQ0qUFMSGqZzQvCcsZ5rrEx1ohUykLossQk14ghrIsc5UVphMxMnman0Zs-73qTQzHGNq3XtVp7KMPvldOV-lNpqoX67rYqlVhI1CV4eUzg3Y8N1K9WVTC2rnVj3SYoiRnFhDB0J8kpEZxLKYB89U8Si5RhyhiTd6OM44xkMiWAPv8LXbqNb2C6iqdAcIm7dkQPGe9C8LYcRoGR6nZFLVW3EqpbCdXtijrsitqB9WNv9XZtzeDLa710PgSjtirTVMJjD3GwZjDeTBOINQSjXEG5atGuINmz3__LkO120wB4cQR0MLouvW5MFX5xGSIckW5AZz13U9V2_9_dqPnV1YQfvvO09y9D6_zgJ4iLDEkGetLrVWjtbtC1v4ZeMk7Vt8upmsnzr2g-u1Tn2U_QHwxF</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Carter, Rickey E.</creator><creator>Lin, Yan</creator><creator>Lipsitz, Stuart R.</creator><creator>Newcombe, Robert G.</creator><creator>Hermayer, Kathie L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>Relative risk estimated from the ratio of two median unbiased estimates</title><author>Carter, Rickey E. ; Lin, Yan ; Lipsitz, Stuart R. ; Newcombe, Robert G. ; Hermayer, Kathie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7551-af8f45fc2c06895e6ebd46b677ba1ccec8299d8aff14ba0601adb0bdfc893cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical estimating</topic><topic>Applications</topic><topic>Applied statistics</topic><topic>Binomial distribution</topic><topic>Binomials</topic><topic>Biology, psychology, social sciences</topic><topic>Bootstrap method</topic><topic>Clinical interviews</topic><topic>Clinical trials</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>Coverage probability</topic><topic>Designs and configurations</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Interval estimators</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Median unbiased estimator</topic><topic>Medical sciences</topic><topic>Null hypothesis</topic><topic>Parametric inference</topic><topic>Point estimators</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Ratio scales</topic><topic>Relative risk</topic><topic>Risk</topic><topic>Risk management</topic><topic>Sample size</topic><topic>Samples</topic><topic>Sciences and techniques of general use</topic><topic>Shrinkage</topic><topic>Shrinkage estimator</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Studies</topic><topic>Unbiased estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Rickey E.</creatorcontrib><creatorcontrib>Lin, Yan</creatorcontrib><creatorcontrib>Lipsitz, Stuart R.</creatorcontrib><creatorcontrib>Newcombe, Robert G.</creatorcontrib><creatorcontrib>Hermayer, Kathie L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Rickey E.</au><au>Lin, Yan</au><au>Lipsitz, Stuart R.</au><au>Newcombe, Robert G.</au><au>Hermayer, Kathie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative risk estimated from the ratio of two median unbiased estimates</atitle><jtitle>Applied statistics</jtitle><addtitle>J R Stat Soc Ser C Appl Stat</addtitle><date>2010-08</date><risdate>2010</risdate><volume>59</volume><issue>4</issue><spage>657</spage><epage>671</epage><pages>657-671</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>Clinical trials often include binary end points. In some cases, no successes are observed and the usual large sample estimates of relative risk are undefined. The paper proposes an estimator for relative risk based on the median unbiased estimator. The relative risk estimator proposed is well defined and performs satisfactorily for a wide range of data configurations. To facilitate the use of the estimator, a deterministic bootstrap confidence interval is also proposed, and an SAS macro is available to perform the necessary calculations. An on-going randomized clinical trial motivated the development of the estimator and is used to illustrate the approach.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20711511</pmid><doi>10.1111/j.1467-9876.2010.00711.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied statistics, 2010-08, Vol.59 (4), p.657-671
issn 0035-9254
1467-9876
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2918902
source RePEc; Business Source Complete; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Analytical estimating
Applications
Applied statistics
Binomial distribution
Binomials
Biology, psychology, social sciences
Bootstrap method
Clinical interviews
Clinical trials
Combinatorics
Combinatorics. Ordered structures
Confidence interval
Confidence intervals
Coverage probability
Designs and configurations
Estimates
Estimating techniques
Estimation
Estimators
Exact sciences and technology
Interval estimators
Mathematical analysis
Mathematics
Median unbiased estimator
Medical sciences
Null hypothesis
Parametric inference
Point estimators
Probability
Probability and statistics
Ratio scales
Relative risk
Risk
Risk management
Sample size
Samples
Sciences and techniques of general use
Shrinkage
Shrinkage estimator
Statistical analysis
Statistics
Studies
Unbiased estimators
title Relative risk estimated from the ratio of two median unbiased estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T19%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20risk%20estimated%20from%20the%20ratio%20of%20two%20median%20unbiased%20estimates&rft.jtitle=Applied%20statistics&rft.au=Carter,%20Rickey%20E.&rft.date=2010-08&rft.volume=59&rft.issue=4&rft.spage=657&rft.epage=671&rft.pages=657-671&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/j.1467-9876.2010.00711.x&rft_dat=%3Cjstor_pubme%3E40783096%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=723927912&rft_id=info:pmid/20711511&rft_jstor_id=40783096&rfr_iscdi=true