Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits
The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial m...
Gespeichert in:
Veröffentlicht in: | Current biology 2008-03, Vol.18 (5), p.354-362 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 5 |
container_start_page | 354 |
container_title | Current biology |
container_volume | 18 |
creator | Groszer, Matthias Keays, David A. Deacon, Robert M.J. de Bono, Joseph P. Prasad-Mulcare, Shweta Gaub, Simone Baum, Muriel G. French, Catherine A. Nicod, Jérôme Coventry, Julie A. Enard, Wolfgang Fray, Martin Brown, Steve D.M. Nolan, Patrick M. Pääbo, Svante Channon, Keith M. Costa, Rui M. Eilers, Jens Ehret, Günter Rawlins, J. Nicholas P. Fisher, Simon E. |
description | The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits. |
doi_str_mv | 10.1016/j.cub.2008.01.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982208001577</els_id><sourcerecordid>70388114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</originalsourceid><addsrcrecordid>eNqFkctu1DAUQCMEokPhA9ggr9gl-JGHIyQk1FJaaUZUKqytG-em41Fip7ZTNH9fj2bEYwML6y58fGT7ZNlbRgtGWf1hV-ilKzilsqCsoDV9lq2YbNqclmX1PFvRtqZ5Kzk_y16FsKOUcdnWL7MzJgWXDS1X2cPNNIPx2JO7vYU5Gk1uRwhpmrgnYHuycdF5skbw1th7YizZGI3kp4lbAuTWGRvJZokQjbMk2UajISZfAq-XCSy5mxH1llzicJCG19mLAcaAb07zPPtx9eX7xXW-_vb15uLzOtelpDGv-CCqUvBWCoYMhwF407cM667vKyGqBrTWjYSqBkb7hkPXdiAELWWXQM3Eefbp6J2XbsJeo40eRjV7M4HfKwdG_b1jzVbdu0fFW9Y0tUyC9yeBdw8LhqgmEzSOI1h0S1ANFVIyVv4X5FSytEQC2RHU3oXgcfh1G0bVoajaqVRUHYoqylQqms68-_MZv0-cEibg4xHA9JmPBr0K2qDV2KesOqremX_onwB8-7MM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20812083</pqid></control><display><type>article</type><title>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Groszer, Matthias ; Keays, David A. ; Deacon, Robert M.J. ; de Bono, Joseph P. ; Prasad-Mulcare, Shweta ; Gaub, Simone ; Baum, Muriel G. ; French, Catherine A. ; Nicod, Jérôme ; Coventry, Julie A. ; Enard, Wolfgang ; Fray, Martin ; Brown, Steve D.M. ; Nolan, Patrick M. ; Pääbo, Svante ; Channon, Keith M. ; Costa, Rui M. ; Eilers, Jens ; Ehret, Günter ; Rawlins, J. Nicholas P. ; Fisher, Simon E.</creator><creatorcontrib>Groszer, Matthias ; Keays, David A. ; Deacon, Robert M.J. ; de Bono, Joseph P. ; Prasad-Mulcare, Shweta ; Gaub, Simone ; Baum, Muriel G. ; French, Catherine A. ; Nicod, Jérôme ; Coventry, Julie A. ; Enard, Wolfgang ; Fray, Martin ; Brown, Steve D.M. ; Nolan, Patrick M. ; Pääbo, Svante ; Channon, Keith M. ; Costa, Rui M. ; Eilers, Jens ; Ehret, Günter ; Rawlins, J. Nicholas P. ; Fisher, Simon E.</creatorcontrib><description>The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2008.01.060</identifier><identifier>PMID: 18328704</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Alleles ; Animals ; Forkhead Transcription Factors - genetics ; Heterozygote ; Humans ; Learning - physiology ; Mice ; Mice, Knockout ; Motor Skills - physiology ; Neuronal Plasticity - genetics ; Point Mutation ; Repressor Proteins - genetics ; Speech Disorders - genetics ; SYSNEURO ; Vocalization, Animal - physiology</subject><ispartof>Current biology, 2008-03, Vol.18 (5), p.354-362</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 ELL & Excerpta Medica. 2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</citedby><cites>FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982208001577$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18328704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groszer, Matthias</creatorcontrib><creatorcontrib>Keays, David A.</creatorcontrib><creatorcontrib>Deacon, Robert M.J.</creatorcontrib><creatorcontrib>de Bono, Joseph P.</creatorcontrib><creatorcontrib>Prasad-Mulcare, Shweta</creatorcontrib><creatorcontrib>Gaub, Simone</creatorcontrib><creatorcontrib>Baum, Muriel G.</creatorcontrib><creatorcontrib>French, Catherine A.</creatorcontrib><creatorcontrib>Nicod, Jérôme</creatorcontrib><creatorcontrib>Coventry, Julie A.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Fray, Martin</creatorcontrib><creatorcontrib>Brown, Steve D.M.</creatorcontrib><creatorcontrib>Nolan, Patrick M.</creatorcontrib><creatorcontrib>Pääbo, Svante</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><creatorcontrib>Costa, Rui M.</creatorcontrib><creatorcontrib>Eilers, Jens</creatorcontrib><creatorcontrib>Ehret, Günter</creatorcontrib><creatorcontrib>Rawlins, J. Nicholas P.</creatorcontrib><creatorcontrib>Fisher, Simon E.</creatorcontrib><title>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.</description><subject>Alleles</subject><subject>Animals</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Motor Skills - physiology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Point Mutation</subject><subject>Repressor Proteins - genetics</subject><subject>Speech Disorders - genetics</subject><subject>SYSNEURO</subject><subject>Vocalization, Animal - physiology</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUQCMEokPhA9ggr9gl-JGHIyQk1FJaaUZUKqytG-em41Fip7ZTNH9fj2bEYwML6y58fGT7ZNlbRgtGWf1hV-ilKzilsqCsoDV9lq2YbNqclmX1PFvRtqZ5Kzk_y16FsKOUcdnWL7MzJgWXDS1X2cPNNIPx2JO7vYU5Gk1uRwhpmrgnYHuycdF5skbw1th7YizZGI3kp4lbAuTWGRvJZokQjbMk2UajISZfAq-XCSy5mxH1llzicJCG19mLAcaAb07zPPtx9eX7xXW-_vb15uLzOtelpDGv-CCqUvBWCoYMhwF407cM667vKyGqBrTWjYSqBkb7hkPXdiAELWWXQM3Eefbp6J2XbsJeo40eRjV7M4HfKwdG_b1jzVbdu0fFW9Y0tUyC9yeBdw8LhqgmEzSOI1h0S1ANFVIyVv4X5FSytEQC2RHU3oXgcfh1G0bVoajaqVRUHYoqylQqms68-_MZv0-cEibg4xHA9JmPBr0K2qDV2KesOqremX_onwB8-7MM</recordid><startdate>20080311</startdate><enddate>20080311</enddate><creator>Groszer, Matthias</creator><creator>Keays, David A.</creator><creator>Deacon, Robert M.J.</creator><creator>de Bono, Joseph P.</creator><creator>Prasad-Mulcare, Shweta</creator><creator>Gaub, Simone</creator><creator>Baum, Muriel G.</creator><creator>French, Catherine A.</creator><creator>Nicod, Jérôme</creator><creator>Coventry, Julie A.</creator><creator>Enard, Wolfgang</creator><creator>Fray, Martin</creator><creator>Brown, Steve D.M.</creator><creator>Nolan, Patrick M.</creator><creator>Pääbo, Svante</creator><creator>Channon, Keith M.</creator><creator>Costa, Rui M.</creator><creator>Eilers, Jens</creator><creator>Ehret, Günter</creator><creator>Rawlins, J. Nicholas P.</creator><creator>Fisher, Simon E.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080311</creationdate><title>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</title><author>Groszer, Matthias ; Keays, David A. ; Deacon, Robert M.J. ; de Bono, Joseph P. ; Prasad-Mulcare, Shweta ; Gaub, Simone ; Baum, Muriel G. ; French, Catherine A. ; Nicod, Jérôme ; Coventry, Julie A. ; Enard, Wolfgang ; Fray, Martin ; Brown, Steve D.M. ; Nolan, Patrick M. ; Pääbo, Svante ; Channon, Keith M. ; Costa, Rui M. ; Eilers, Jens ; Ehret, Günter ; Rawlins, J. Nicholas P. ; Fisher, Simon E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Motor Skills - physiology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Point Mutation</topic><topic>Repressor Proteins - genetics</topic><topic>Speech Disorders - genetics</topic><topic>SYSNEURO</topic><topic>Vocalization, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groszer, Matthias</creatorcontrib><creatorcontrib>Keays, David A.</creatorcontrib><creatorcontrib>Deacon, Robert M.J.</creatorcontrib><creatorcontrib>de Bono, Joseph P.</creatorcontrib><creatorcontrib>Prasad-Mulcare, Shweta</creatorcontrib><creatorcontrib>Gaub, Simone</creatorcontrib><creatorcontrib>Baum, Muriel G.</creatorcontrib><creatorcontrib>French, Catherine A.</creatorcontrib><creatorcontrib>Nicod, Jérôme</creatorcontrib><creatorcontrib>Coventry, Julie A.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Fray, Martin</creatorcontrib><creatorcontrib>Brown, Steve D.M.</creatorcontrib><creatorcontrib>Nolan, Patrick M.</creatorcontrib><creatorcontrib>Pääbo, Svante</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><creatorcontrib>Costa, Rui M.</creatorcontrib><creatorcontrib>Eilers, Jens</creatorcontrib><creatorcontrib>Ehret, Günter</creatorcontrib><creatorcontrib>Rawlins, J. Nicholas P.</creatorcontrib><creatorcontrib>Fisher, Simon E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groszer, Matthias</au><au>Keays, David A.</au><au>Deacon, Robert M.J.</au><au>de Bono, Joseph P.</au><au>Prasad-Mulcare, Shweta</au><au>Gaub, Simone</au><au>Baum, Muriel G.</au><au>French, Catherine A.</au><au>Nicod, Jérôme</au><au>Coventry, Julie A.</au><au>Enard, Wolfgang</au><au>Fray, Martin</au><au>Brown, Steve D.M.</au><au>Nolan, Patrick M.</au><au>Pääbo, Svante</au><au>Channon, Keith M.</au><au>Costa, Rui M.</au><au>Eilers, Jens</au><au>Ehret, Günter</au><au>Rawlins, J. Nicholas P.</au><au>Fisher, Simon E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2008-03-11</date><risdate>2008</risdate><volume>18</volume><issue>5</issue><spage>354</spage><epage>362</epage><pages>354-362</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>18328704</pmid><doi>10.1016/j.cub.2008.01.060</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2008-03, Vol.18 (5), p.354-362 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917768 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Alleles Animals Forkhead Transcription Factors - genetics Heterozygote Humans Learning - physiology Mice Mice, Knockout Motor Skills - physiology Neuronal Plasticity - genetics Point Mutation Repressor Proteins - genetics Speech Disorders - genetics SYSNEURO Vocalization, Animal - physiology |
title | Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Synaptic%20Plasticity%20and%20Motor%20Learning%20in%20Mice%20with%20a%20Point%20Mutation%20Implicated%20in%20Human%20Speech%20Deficits&rft.jtitle=Current%20biology&rft.au=Groszer,%20Matthias&rft.date=2008-03-11&rft.volume=18&rft.issue=5&rft.spage=354&rft.epage=362&rft.pages=354-362&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2008.01.060&rft_dat=%3Cproquest_pubme%3E70388114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20812083&rft_id=info:pmid/18328704&rft_els_id=S0960982208001577&rfr_iscdi=true |