Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits

The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2008-03, Vol.18 (5), p.354-362
Hauptverfasser: Groszer, Matthias, Keays, David A., Deacon, Robert M.J., de Bono, Joseph P., Prasad-Mulcare, Shweta, Gaub, Simone, Baum, Muriel G., French, Catherine A., Nicod, Jérôme, Coventry, Julie A., Enard, Wolfgang, Fray, Martin, Brown, Steve D.M., Nolan, Patrick M., Pääbo, Svante, Channon, Keith M., Costa, Rui M., Eilers, Jens, Ehret, Günter, Rawlins, J. Nicholas P., Fisher, Simon E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 5
container_start_page 354
container_title Current biology
container_volume 18
creator Groszer, Matthias
Keays, David A.
Deacon, Robert M.J.
de Bono, Joseph P.
Prasad-Mulcare, Shweta
Gaub, Simone
Baum, Muriel G.
French, Catherine A.
Nicod, Jérôme
Coventry, Julie A.
Enard, Wolfgang
Fray, Martin
Brown, Steve D.M.
Nolan, Patrick M.
Pääbo, Svante
Channon, Keith M.
Costa, Rui M.
Eilers, Jens
Ehret, Günter
Rawlins, J. Nicholas P.
Fisher, Simon E.
description The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.
doi_str_mv 10.1016/j.cub.2008.01.060
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982208001577</els_id><sourcerecordid>70388114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</originalsourceid><addsrcrecordid>eNqFkctu1DAUQCMEokPhA9ggr9gl-JGHIyQk1FJaaUZUKqytG-em41Fip7ZTNH9fj2bEYwML6y58fGT7ZNlbRgtGWf1hV-ilKzilsqCsoDV9lq2YbNqclmX1PFvRtqZ5Kzk_y16FsKOUcdnWL7MzJgWXDS1X2cPNNIPx2JO7vYU5Gk1uRwhpmrgnYHuycdF5skbw1th7YizZGI3kp4lbAuTWGRvJZokQjbMk2UajISZfAq-XCSy5mxH1llzicJCG19mLAcaAb07zPPtx9eX7xXW-_vb15uLzOtelpDGv-CCqUvBWCoYMhwF407cM667vKyGqBrTWjYSqBkb7hkPXdiAELWWXQM3Eefbp6J2XbsJeo40eRjV7M4HfKwdG_b1jzVbdu0fFW9Y0tUyC9yeBdw8LhqgmEzSOI1h0S1ANFVIyVv4X5FSytEQC2RHU3oXgcfh1G0bVoajaqVRUHYoqylQqms68-_MZv0-cEibg4xHA9JmPBr0K2qDV2KesOqremX_onwB8-7MM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20812083</pqid></control><display><type>article</type><title>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Groszer, Matthias ; Keays, David A. ; Deacon, Robert M.J. ; de Bono, Joseph P. ; Prasad-Mulcare, Shweta ; Gaub, Simone ; Baum, Muriel G. ; French, Catherine A. ; Nicod, Jérôme ; Coventry, Julie A. ; Enard, Wolfgang ; Fray, Martin ; Brown, Steve D.M. ; Nolan, Patrick M. ; Pääbo, Svante ; Channon, Keith M. ; Costa, Rui M. ; Eilers, Jens ; Ehret, Günter ; Rawlins, J. Nicholas P. ; Fisher, Simon E.</creator><creatorcontrib>Groszer, Matthias ; Keays, David A. ; Deacon, Robert M.J. ; de Bono, Joseph P. ; Prasad-Mulcare, Shweta ; Gaub, Simone ; Baum, Muriel G. ; French, Catherine A. ; Nicod, Jérôme ; Coventry, Julie A. ; Enard, Wolfgang ; Fray, Martin ; Brown, Steve D.M. ; Nolan, Patrick M. ; Pääbo, Svante ; Channon, Keith M. ; Costa, Rui M. ; Eilers, Jens ; Ehret, Günter ; Rawlins, J. Nicholas P. ; Fisher, Simon E.</creatorcontrib><description>The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2008.01.060</identifier><identifier>PMID: 18328704</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Alleles ; Animals ; Forkhead Transcription Factors - genetics ; Heterozygote ; Humans ; Learning - physiology ; Mice ; Mice, Knockout ; Motor Skills - physiology ; Neuronal Plasticity - genetics ; Point Mutation ; Repressor Proteins - genetics ; Speech Disorders - genetics ; SYSNEURO ; Vocalization, Animal - physiology</subject><ispartof>Current biology, 2008-03, Vol.18 (5), p.354-362</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 ELL &amp; Excerpta Medica. 2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</citedby><cites>FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982208001577$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18328704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groszer, Matthias</creatorcontrib><creatorcontrib>Keays, David A.</creatorcontrib><creatorcontrib>Deacon, Robert M.J.</creatorcontrib><creatorcontrib>de Bono, Joseph P.</creatorcontrib><creatorcontrib>Prasad-Mulcare, Shweta</creatorcontrib><creatorcontrib>Gaub, Simone</creatorcontrib><creatorcontrib>Baum, Muriel G.</creatorcontrib><creatorcontrib>French, Catherine A.</creatorcontrib><creatorcontrib>Nicod, Jérôme</creatorcontrib><creatorcontrib>Coventry, Julie A.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Fray, Martin</creatorcontrib><creatorcontrib>Brown, Steve D.M.</creatorcontrib><creatorcontrib>Nolan, Patrick M.</creatorcontrib><creatorcontrib>Pääbo, Svante</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><creatorcontrib>Costa, Rui M.</creatorcontrib><creatorcontrib>Eilers, Jens</creatorcontrib><creatorcontrib>Ehret, Günter</creatorcontrib><creatorcontrib>Rawlins, J. Nicholas P.</creatorcontrib><creatorcontrib>Fisher, Simon E.</creatorcontrib><title>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.</description><subject>Alleles</subject><subject>Animals</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Motor Skills - physiology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Point Mutation</subject><subject>Repressor Proteins - genetics</subject><subject>Speech Disorders - genetics</subject><subject>SYSNEURO</subject><subject>Vocalization, Animal - physiology</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUQCMEokPhA9ggr9gl-JGHIyQk1FJaaUZUKqytG-em41Fip7ZTNH9fj2bEYwML6y58fGT7ZNlbRgtGWf1hV-ilKzilsqCsoDV9lq2YbNqclmX1PFvRtqZ5Kzk_y16FsKOUcdnWL7MzJgWXDS1X2cPNNIPx2JO7vYU5Gk1uRwhpmrgnYHuycdF5skbw1th7YizZGI3kp4lbAuTWGRvJZokQjbMk2UajISZfAq-XCSy5mxH1llzicJCG19mLAcaAb07zPPtx9eX7xXW-_vb15uLzOtelpDGv-CCqUvBWCoYMhwF407cM667vKyGqBrTWjYSqBkb7hkPXdiAELWWXQM3Eefbp6J2XbsJeo40eRjV7M4HfKwdG_b1jzVbdu0fFW9Y0tUyC9yeBdw8LhqgmEzSOI1h0S1ANFVIyVv4X5FSytEQC2RHU3oXgcfh1G0bVoajaqVRUHYoqylQqms68-_MZv0-cEibg4xHA9JmPBr0K2qDV2KesOqremX_onwB8-7MM</recordid><startdate>20080311</startdate><enddate>20080311</enddate><creator>Groszer, Matthias</creator><creator>Keays, David A.</creator><creator>Deacon, Robert M.J.</creator><creator>de Bono, Joseph P.</creator><creator>Prasad-Mulcare, Shweta</creator><creator>Gaub, Simone</creator><creator>Baum, Muriel G.</creator><creator>French, Catherine A.</creator><creator>Nicod, Jérôme</creator><creator>Coventry, Julie A.</creator><creator>Enard, Wolfgang</creator><creator>Fray, Martin</creator><creator>Brown, Steve D.M.</creator><creator>Nolan, Patrick M.</creator><creator>Pääbo, Svante</creator><creator>Channon, Keith M.</creator><creator>Costa, Rui M.</creator><creator>Eilers, Jens</creator><creator>Ehret, Günter</creator><creator>Rawlins, J. Nicholas P.</creator><creator>Fisher, Simon E.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080311</creationdate><title>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</title><author>Groszer, Matthias ; Keays, David A. ; Deacon, Robert M.J. ; de Bono, Joseph P. ; Prasad-Mulcare, Shweta ; Gaub, Simone ; Baum, Muriel G. ; French, Catherine A. ; Nicod, Jérôme ; Coventry, Julie A. ; Enard, Wolfgang ; Fray, Martin ; Brown, Steve D.M. ; Nolan, Patrick M. ; Pääbo, Svante ; Channon, Keith M. ; Costa, Rui M. ; Eilers, Jens ; Ehret, Günter ; Rawlins, J. Nicholas P. ; Fisher, Simon E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-52f354329831e1effa27d91e6bdd53357accc78a56a10d72ab9ba33048b27dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Motor Skills - physiology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Point Mutation</topic><topic>Repressor Proteins - genetics</topic><topic>Speech Disorders - genetics</topic><topic>SYSNEURO</topic><topic>Vocalization, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groszer, Matthias</creatorcontrib><creatorcontrib>Keays, David A.</creatorcontrib><creatorcontrib>Deacon, Robert M.J.</creatorcontrib><creatorcontrib>de Bono, Joseph P.</creatorcontrib><creatorcontrib>Prasad-Mulcare, Shweta</creatorcontrib><creatorcontrib>Gaub, Simone</creatorcontrib><creatorcontrib>Baum, Muriel G.</creatorcontrib><creatorcontrib>French, Catherine A.</creatorcontrib><creatorcontrib>Nicod, Jérôme</creatorcontrib><creatorcontrib>Coventry, Julie A.</creatorcontrib><creatorcontrib>Enard, Wolfgang</creatorcontrib><creatorcontrib>Fray, Martin</creatorcontrib><creatorcontrib>Brown, Steve D.M.</creatorcontrib><creatorcontrib>Nolan, Patrick M.</creatorcontrib><creatorcontrib>Pääbo, Svante</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><creatorcontrib>Costa, Rui M.</creatorcontrib><creatorcontrib>Eilers, Jens</creatorcontrib><creatorcontrib>Ehret, Günter</creatorcontrib><creatorcontrib>Rawlins, J. Nicholas P.</creatorcontrib><creatorcontrib>Fisher, Simon E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groszer, Matthias</au><au>Keays, David A.</au><au>Deacon, Robert M.J.</au><au>de Bono, Joseph P.</au><au>Prasad-Mulcare, Shweta</au><au>Gaub, Simone</au><au>Baum, Muriel G.</au><au>French, Catherine A.</au><au>Nicod, Jérôme</au><au>Coventry, Julie A.</au><au>Enard, Wolfgang</au><au>Fray, Martin</au><au>Brown, Steve D.M.</au><au>Nolan, Patrick M.</au><au>Pääbo, Svante</au><au>Channon, Keith M.</au><au>Costa, Rui M.</au><au>Eilers, Jens</au><au>Ehret, Günter</au><au>Rawlins, J. Nicholas P.</au><au>Fisher, Simon E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2008-03-11</date><risdate>2008</risdate><volume>18</volume><issue>5</issue><spage>354</spage><epage>362</epage><pages>354-362</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>18328704</pmid><doi>10.1016/j.cub.2008.01.060</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2008-03, Vol.18 (5), p.354-362
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917768
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Alleles
Animals
Forkhead Transcription Factors - genetics
Heterozygote
Humans
Learning - physiology
Mice
Mice, Knockout
Motor Skills - physiology
Neuronal Plasticity - genetics
Point Mutation
Repressor Proteins - genetics
Speech Disorders - genetics
SYSNEURO
Vocalization, Animal - physiology
title Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Synaptic%20Plasticity%20and%20Motor%20Learning%20in%20Mice%20with%20a%20Point%20Mutation%20Implicated%20in%20Human%20Speech%20Deficits&rft.jtitle=Current%20biology&rft.au=Groszer,%20Matthias&rft.date=2008-03-11&rft.volume=18&rft.issue=5&rft.spage=354&rft.epage=362&rft.pages=354-362&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2008.01.060&rft_dat=%3Cproquest_pubme%3E70388114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20812083&rft_id=info:pmid/18328704&rft_els_id=S0960982208001577&rfr_iscdi=true