Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8
Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unligan...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section F, Structural biology and crystallization communications Structural biology and crystallization communications, 2010-08, Vol.66 (8), p.893-898 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 8 |
container_start_page | 893 |
container_title | Acta crystallographica. Section F, Structural biology and crystallization communications |
container_volume | 66 |
creator | Kanagawa, Mayumi Baba, Seiki Ebihara, Akio Shinkai, Akeo Hirotsu, Ken Mega, Ryosuke Kim, Kwang Kuramitsu, Seiki Sampei, Gen-ichi Kawai, Gota |
description | Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes. |
doi_str_mv | 10.1107/S1744309110023079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754895182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqXwA7igSBwoh4DH374gbau2i1RAYhcqTpbjdZqUbBzspHT_PY62rApI9GDNh595bY8ny54DegOAxNsFCEoJUilAmCChHmT7U6qYcg_v-HvZkxivECJEcfk428OIK8I57GduMYTRDmNwMfdVXm96f2O6oW46V1yOpks272sf0wpN6eOmHYLpYuWCiS4_XC7nM4Qxep1Xwa_zZe3Ceoz5MFnf102bgvmRfJo9qkwb3bNbe5B9OT1ZHs-L809n749n54VlhKvCVStYGVYBKQVRKrkErATBnFEgxcoiZDGkQFrKSie4pbSisqx4lbKlJQfZu61uP5Zrt7KuS7dtdR-atQkb7U2j_9zpmlpf-muNFQgsaRJ4dSsQ_I_RxUGvm2hd25rO-TFqwahUDCS-n5xAyRkk8vC_JHABVClKREJf_oVe-TF0qWUaBAGefllNR8OWssHHGFy1eyAgPQ2G_mcwUs2Lu53ZVfyehASoLfCzad3mfkU9-3aK518ZsEm82NY2cXA3u1oTvmsuiGD64uOZXlx8OMIgPusF-QVjJtOf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731602392</pqid></control><display><type>article</type><title>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kanagawa, Mayumi ; Baba, Seiki ; Ebihara, Akio ; Shinkai, Akeo ; Hirotsu, Ken ; Mega, Ryosuke ; Kim, Kwang ; Kuramitsu, Seiki ; Sampei, Gen-ichi ; Kawai, Gota</creator><creatorcontrib>Kanagawa, Mayumi ; Baba, Seiki ; Ebihara, Akio ; Shinkai, Akeo ; Hirotsu, Ken ; Mega, Ryosuke ; Kim, Kwang ; Kuramitsu, Seiki ; Sampei, Gen-ichi ; Kawai, Gota</creatorcontrib><description>Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.</description><identifier>ISSN: 1744-3091</identifier><identifier>EISSN: 1744-3091</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S1744309110023079</identifier><identifier>PMID: 20693661</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Crystallography ; Crystallography, X-Ray ; Enzymes ; Guanines ; Guanosine Monophosphate - chemistry ; Guanosine Monophosphate - metabolism ; Hypoxanthine ; Hypoxanthine Phosphoribosyltransferase - chemistry ; Hypoxanthine Phosphoribosyltransferase - metabolism ; IMP ; Inosine Monophosphate - chemistry ; Inosine Monophosphate - metabolism ; Joining ; Models, Molecular ; Pathways ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; purine nucleotide biosynthetic pathway ; Rossmann fold ; Structural Communications ; Substrate Specificity ; Synthesis ; Thermus thermophilus ; Thermus thermophilus - enzymology ; transferases</subject><ispartof>Acta crystallographica. Section F, Structural biology and crystallization communications, 2010-08, Vol.66 (8), p.893-898</ispartof><rights>International Union of Crystallography, 2010</rights><rights>International Union of Crystallography 2010 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</citedby><cites>FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917284/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917284/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20693661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanagawa, Mayumi</creatorcontrib><creatorcontrib>Baba, Seiki</creatorcontrib><creatorcontrib>Ebihara, Akio</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>Hirotsu, Ken</creatorcontrib><creatorcontrib>Mega, Ryosuke</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Sampei, Gen-ichi</creatorcontrib><creatorcontrib>Kawai, Gota</creatorcontrib><title>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</title><title>Acta crystallographica. Section F, Structural biology and crystallization communications</title><addtitle>Acta Cryst. F</addtitle><description>Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.</description><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Guanines</subject><subject>Guanosine Monophosphate - chemistry</subject><subject>Guanosine Monophosphate - metabolism</subject><subject>Hypoxanthine</subject><subject>Hypoxanthine Phosphoribosyltransferase - chemistry</subject><subject>Hypoxanthine Phosphoribosyltransferase - metabolism</subject><subject>IMP</subject><subject>Inosine Monophosphate - chemistry</subject><subject>Inosine Monophosphate - metabolism</subject><subject>Joining</subject><subject>Models, Molecular</subject><subject>Pathways</subject><subject>Protein Folding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>purine nucleotide biosynthetic pathway</subject><subject>Rossmann fold</subject><subject>Structural Communications</subject><subject>Substrate Specificity</subject><subject>Synthesis</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - enzymology</subject><subject>transferases</subject><issn>1744-3091</issn><issn>1744-3091</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEoqXwA7igSBwoh4DH374gbau2i1RAYhcqTpbjdZqUbBzspHT_PY62rApI9GDNh595bY8ny54DegOAxNsFCEoJUilAmCChHmT7U6qYcg_v-HvZkxivECJEcfk428OIK8I57GduMYTRDmNwMfdVXm96f2O6oW46V1yOpks272sf0wpN6eOmHYLpYuWCiS4_XC7nM4Qxep1Xwa_zZe3Ceoz5MFnf102bgvmRfJo9qkwb3bNbe5B9OT1ZHs-L809n749n54VlhKvCVStYGVYBKQVRKrkErATBnFEgxcoiZDGkQFrKSie4pbSisqx4lbKlJQfZu61uP5Zrt7KuS7dtdR-atQkb7U2j_9zpmlpf-muNFQgsaRJ4dSsQ_I_RxUGvm2hd25rO-TFqwahUDCS-n5xAyRkk8vC_JHABVClKREJf_oVe-TF0qWUaBAGefllNR8OWssHHGFy1eyAgPQ2G_mcwUs2Lu53ZVfyehASoLfCzad3mfkU9-3aK518ZsEm82NY2cXA3u1oTvmsuiGD64uOZXlx8OMIgPusF-QVjJtOf</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kanagawa, Mayumi</creator><creator>Baba, Seiki</creator><creator>Ebihara, Akio</creator><creator>Shinkai, Akeo</creator><creator>Hirotsu, Ken</creator><creator>Mega, Ryosuke</creator><creator>Kim, Kwang</creator><creator>Kuramitsu, Seiki</creator><creator>Sampei, Gen-ichi</creator><creator>Kawai, Gota</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</title><author>Kanagawa, Mayumi ; Baba, Seiki ; Ebihara, Akio ; Shinkai, Akeo ; Hirotsu, Ken ; Mega, Ryosuke ; Kim, Kwang ; Kuramitsu, Seiki ; Sampei, Gen-ichi ; Kawai, Gota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Guanines</topic><topic>Guanosine Monophosphate - chemistry</topic><topic>Guanosine Monophosphate - metabolism</topic><topic>Hypoxanthine</topic><topic>Hypoxanthine Phosphoribosyltransferase - chemistry</topic><topic>Hypoxanthine Phosphoribosyltransferase - metabolism</topic><topic>IMP</topic><topic>Inosine Monophosphate - chemistry</topic><topic>Inosine Monophosphate - metabolism</topic><topic>Joining</topic><topic>Models, Molecular</topic><topic>Pathways</topic><topic>Protein Folding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>purine nucleotide biosynthetic pathway</topic><topic>Rossmann fold</topic><topic>Structural Communications</topic><topic>Substrate Specificity</topic><topic>Synthesis</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - enzymology</topic><topic>transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanagawa, Mayumi</creatorcontrib><creatorcontrib>Baba, Seiki</creatorcontrib><creatorcontrib>Ebihara, Akio</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>Hirotsu, Ken</creatorcontrib><creatorcontrib>Mega, Ryosuke</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Sampei, Gen-ichi</creatorcontrib><creatorcontrib>Kawai, Gota</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanagawa, Mayumi</au><au>Baba, Seiki</au><au>Ebihara, Akio</au><au>Shinkai, Akeo</au><au>Hirotsu, Ken</au><au>Mega, Ryosuke</au><au>Kim, Kwang</au><au>Kuramitsu, Seiki</au><au>Sampei, Gen-ichi</au><au>Kawai, Gota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</atitle><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle><addtitle>Acta Cryst. F</addtitle><date>2010-08</date><risdate>2010</risdate><volume>66</volume><issue>8</issue><spage>893</spage><epage>898</epage><pages>893-898</pages><issn>1744-3091</issn><eissn>1744-3091</eissn><eissn>2053-230X</eissn><abstract>Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>20693661</pmid><doi>10.1107/S1744309110023079</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-3091 |
ispartof | Acta crystallographica. Section F, Structural biology and crystallization communications, 2010-08, Vol.66 (8), p.893-898 |
issn | 1744-3091 1744-3091 2053-230X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917284 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Crystallography Crystallography, X-Ray Enzymes Guanines Guanosine Monophosphate - chemistry Guanosine Monophosphate - metabolism Hypoxanthine Hypoxanthine Phosphoribosyltransferase - chemistry Hypoxanthine Phosphoribosyltransferase - metabolism IMP Inosine Monophosphate - chemistry Inosine Monophosphate - metabolism Joining Models, Molecular Pathways Protein Folding Protein Structure, Quaternary Protein Structure, Tertiary purine nucleotide biosynthetic pathway Rossmann fold Structural Communications Substrate Specificity Synthesis Thermus thermophilus Thermus thermophilus - enzymology transferases |
title | Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20hypoxanthine-guanine%20phosphoribosyltransferase%20(TTHA0220)%20from%20Thermus%20thermophilus%20HB8&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20and%20crystallization%20communications&rft.au=Kanagawa,%20Mayumi&rft.date=2010-08&rft.volume=66&rft.issue=8&rft.spage=893&rft.epage=898&rft.pages=893-898&rft.issn=1744-3091&rft.eissn=1744-3091&rft_id=info:doi/10.1107/S1744309110023079&rft_dat=%3Cproquest_pubme%3E754895182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731602392&rft_id=info:pmid/20693661&rfr_iscdi=true |