Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8

Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unligan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section F, Structural biology and crystallization communications Structural biology and crystallization communications, 2010-08, Vol.66 (8), p.893-898
Hauptverfasser: Kanagawa, Mayumi, Baba, Seiki, Ebihara, Akio, Shinkai, Akeo, Hirotsu, Ken, Mega, Ryosuke, Kim, Kwang, Kuramitsu, Seiki, Sampei, Gen-ichi, Kawai, Gota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 8
container_start_page 893
container_title Acta crystallographica. Section F, Structural biology and crystallization communications
container_volume 66
creator Kanagawa, Mayumi
Baba, Seiki
Ebihara, Akio
Shinkai, Akeo
Hirotsu, Ken
Mega, Ryosuke
Kim, Kwang
Kuramitsu, Seiki
Sampei, Gen-ichi
Kawai, Gota
description Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.
doi_str_mv 10.1107/S1744309110023079
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754895182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqXwA7igSBwoh4DH374gbau2i1RAYhcqTpbjdZqUbBzspHT_PY62rApI9GDNh595bY8ny54DegOAxNsFCEoJUilAmCChHmT7U6qYcg_v-HvZkxivECJEcfk428OIK8I57GduMYTRDmNwMfdVXm96f2O6oW46V1yOpks272sf0wpN6eOmHYLpYuWCiS4_XC7nM4Qxep1Xwa_zZe3Ceoz5MFnf102bgvmRfJo9qkwb3bNbe5B9OT1ZHs-L809n749n54VlhKvCVStYGVYBKQVRKrkErATBnFEgxcoiZDGkQFrKSie4pbSisqx4lbKlJQfZu61uP5Zrt7KuS7dtdR-atQkb7U2j_9zpmlpf-muNFQgsaRJ4dSsQ_I_RxUGvm2hd25rO-TFqwahUDCS-n5xAyRkk8vC_JHABVClKREJf_oVe-TF0qWUaBAGefllNR8OWssHHGFy1eyAgPQ2G_mcwUs2Lu53ZVfyehASoLfCzad3mfkU9-3aK518ZsEm82NY2cXA3u1oTvmsuiGD64uOZXlx8OMIgPusF-QVjJtOf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731602392</pqid></control><display><type>article</type><title>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kanagawa, Mayumi ; Baba, Seiki ; Ebihara, Akio ; Shinkai, Akeo ; Hirotsu, Ken ; Mega, Ryosuke ; Kim, Kwang ; Kuramitsu, Seiki ; Sampei, Gen-ichi ; Kawai, Gota</creator><creatorcontrib>Kanagawa, Mayumi ; Baba, Seiki ; Ebihara, Akio ; Shinkai, Akeo ; Hirotsu, Ken ; Mega, Ryosuke ; Kim, Kwang ; Kuramitsu, Seiki ; Sampei, Gen-ichi ; Kawai, Gota</creatorcontrib><description>Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.</description><identifier>ISSN: 1744-3091</identifier><identifier>EISSN: 1744-3091</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S1744309110023079</identifier><identifier>PMID: 20693661</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Crystallography ; Crystallography, X-Ray ; Enzymes ; Guanines ; Guanosine Monophosphate - chemistry ; Guanosine Monophosphate - metabolism ; Hypoxanthine ; Hypoxanthine Phosphoribosyltransferase - chemistry ; Hypoxanthine Phosphoribosyltransferase - metabolism ; IMP ; Inosine Monophosphate - chemistry ; Inosine Monophosphate - metabolism ; Joining ; Models, Molecular ; Pathways ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; purine nucleotide biosynthetic pathway ; Rossmann fold ; Structural Communications ; Substrate Specificity ; Synthesis ; Thermus thermophilus ; Thermus thermophilus - enzymology ; transferases</subject><ispartof>Acta crystallographica. Section F, Structural biology and crystallization communications, 2010-08, Vol.66 (8), p.893-898</ispartof><rights>International Union of Crystallography, 2010</rights><rights>International Union of Crystallography 2010 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</citedby><cites>FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917284/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917284/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20693661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanagawa, Mayumi</creatorcontrib><creatorcontrib>Baba, Seiki</creatorcontrib><creatorcontrib>Ebihara, Akio</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>Hirotsu, Ken</creatorcontrib><creatorcontrib>Mega, Ryosuke</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Sampei, Gen-ichi</creatorcontrib><creatorcontrib>Kawai, Gota</creatorcontrib><title>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</title><title>Acta crystallographica. Section F, Structural biology and crystallization communications</title><addtitle>Acta Cryst. F</addtitle><description>Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.</description><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Guanines</subject><subject>Guanosine Monophosphate - chemistry</subject><subject>Guanosine Monophosphate - metabolism</subject><subject>Hypoxanthine</subject><subject>Hypoxanthine Phosphoribosyltransferase - chemistry</subject><subject>Hypoxanthine Phosphoribosyltransferase - metabolism</subject><subject>IMP</subject><subject>Inosine Monophosphate - chemistry</subject><subject>Inosine Monophosphate - metabolism</subject><subject>Joining</subject><subject>Models, Molecular</subject><subject>Pathways</subject><subject>Protein Folding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>purine nucleotide biosynthetic pathway</subject><subject>Rossmann fold</subject><subject>Structural Communications</subject><subject>Substrate Specificity</subject><subject>Synthesis</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - enzymology</subject><subject>transferases</subject><issn>1744-3091</issn><issn>1744-3091</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEoqXwA7igSBwoh4DH374gbau2i1RAYhcqTpbjdZqUbBzspHT_PY62rApI9GDNh595bY8ny54DegOAxNsFCEoJUilAmCChHmT7U6qYcg_v-HvZkxivECJEcfk428OIK8I57GduMYTRDmNwMfdVXm96f2O6oW46V1yOpks272sf0wpN6eOmHYLpYuWCiS4_XC7nM4Qxep1Xwa_zZe3Ceoz5MFnf102bgvmRfJo9qkwb3bNbe5B9OT1ZHs-L809n749n54VlhKvCVStYGVYBKQVRKrkErATBnFEgxcoiZDGkQFrKSie4pbSisqx4lbKlJQfZu61uP5Zrt7KuS7dtdR-atQkb7U2j_9zpmlpf-muNFQgsaRJ4dSsQ_I_RxUGvm2hd25rO-TFqwahUDCS-n5xAyRkk8vC_JHABVClKREJf_oVe-TF0qWUaBAGefllNR8OWssHHGFy1eyAgPQ2G_mcwUs2Lu53ZVfyehASoLfCzad3mfkU9-3aK518ZsEm82NY2cXA3u1oTvmsuiGD64uOZXlx8OMIgPusF-QVjJtOf</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kanagawa, Mayumi</creator><creator>Baba, Seiki</creator><creator>Ebihara, Akio</creator><creator>Shinkai, Akeo</creator><creator>Hirotsu, Ken</creator><creator>Mega, Ryosuke</creator><creator>Kim, Kwang</creator><creator>Kuramitsu, Seiki</creator><creator>Sampei, Gen-ichi</creator><creator>Kawai, Gota</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</title><author>Kanagawa, Mayumi ; Baba, Seiki ; Ebihara, Akio ; Shinkai, Akeo ; Hirotsu, Ken ; Mega, Ryosuke ; Kim, Kwang ; Kuramitsu, Seiki ; Sampei, Gen-ichi ; Kawai, Gota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5369-efd1da5f13b7399da531c8175ea9187dc00c21ea98c45be76c44f48bf6f1eabc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Guanines</topic><topic>Guanosine Monophosphate - chemistry</topic><topic>Guanosine Monophosphate - metabolism</topic><topic>Hypoxanthine</topic><topic>Hypoxanthine Phosphoribosyltransferase - chemistry</topic><topic>Hypoxanthine Phosphoribosyltransferase - metabolism</topic><topic>IMP</topic><topic>Inosine Monophosphate - chemistry</topic><topic>Inosine Monophosphate - metabolism</topic><topic>Joining</topic><topic>Models, Molecular</topic><topic>Pathways</topic><topic>Protein Folding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>purine nucleotide biosynthetic pathway</topic><topic>Rossmann fold</topic><topic>Structural Communications</topic><topic>Substrate Specificity</topic><topic>Synthesis</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - enzymology</topic><topic>transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanagawa, Mayumi</creatorcontrib><creatorcontrib>Baba, Seiki</creatorcontrib><creatorcontrib>Ebihara, Akio</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>Hirotsu, Ken</creatorcontrib><creatorcontrib>Mega, Ryosuke</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Sampei, Gen-ichi</creatorcontrib><creatorcontrib>Kawai, Gota</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanagawa, Mayumi</au><au>Baba, Seiki</au><au>Ebihara, Akio</au><au>Shinkai, Akeo</au><au>Hirotsu, Ken</au><au>Mega, Ryosuke</au><au>Kim, Kwang</au><au>Kuramitsu, Seiki</au><au>Sampei, Gen-ichi</au><au>Kawai, Gota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8</atitle><jtitle>Acta crystallographica. Section F, Structural biology and crystallization communications</jtitle><addtitle>Acta Cryst. F</addtitle><date>2010-08</date><risdate>2010</risdate><volume>66</volume><issue>8</issue><spage>893</spage><epage>898</epage><pages>893-898</pages><issn>1744-3091</issn><eissn>1744-3091</eissn><eissn>2053-230X</eissn><abstract>Hypoxanthine‐guanine phosphoribosyltransferase (HGPRTase), which is a key enzyme in the purine‐salvage pathway, catalyzes the synthesis of IMP or GMP from α‐d‐phosphoribosyl‐1‐pyrophosphate and hypoxanthine or guanine, respectively. Structures of HGPRTase from Thermus thermophilus HB8 in the unliganded form, in complex with IMP and in complex with GMP have been determined at 2.1, 1.9 and 2.2 Å resolution, respectively. The overall fold of the IMP complex was similar to that of the unliganded form, but the main‐chain and side‐chain atoms of the active site moved to accommodate IMP. The overall folds of the IMP and GMP complexes were almost identical to each other. Structural comparison of the T. thermophilus HB8 enzyme with 6‐oxopurine PRTases for which structures have been determined showed that these enzymes can be tentatively divided into groups I and II and that the T. thermophilus HB8 enzyme belongs to group I. The group II enzymes are characterized by an N‐terminal extension with additional secondary elements and a long loop connecting the second α‐helix and β‐strand compared with the group I enzymes.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>20693661</pmid><doi>10.1107/S1744309110023079</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-3091
ispartof Acta crystallographica. Section F, Structural biology and crystallization communications, 2010-08, Vol.66 (8), p.893-898
issn 1744-3091
1744-3091
2053-230X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2917284
source MEDLINE; Wiley Online Library Journals Frontfile Complete; PubMed Central; Free Full-Text Journals in Chemistry
subjects Crystallography
Crystallography, X-Ray
Enzymes
Guanines
Guanosine Monophosphate - chemistry
Guanosine Monophosphate - metabolism
Hypoxanthine
Hypoxanthine Phosphoribosyltransferase - chemistry
Hypoxanthine Phosphoribosyltransferase - metabolism
IMP
Inosine Monophosphate - chemistry
Inosine Monophosphate - metabolism
Joining
Models, Molecular
Pathways
Protein Folding
Protein Structure, Quaternary
Protein Structure, Tertiary
purine nucleotide biosynthetic pathway
Rossmann fold
Structural Communications
Substrate Specificity
Synthesis
Thermus thermophilus
Thermus thermophilus - enzymology
transferases
title Structures of hypoxanthine-guanine phosphoribosyltransferase (TTHA0220) from Thermus thermophilus HB8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20hypoxanthine-guanine%20phosphoribosyltransferase%20(TTHA0220)%20from%20Thermus%20thermophilus%20HB8&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20and%20crystallization%20communications&rft.au=Kanagawa,%20Mayumi&rft.date=2010-08&rft.volume=66&rft.issue=8&rft.spage=893&rft.epage=898&rft.pages=893-898&rft.issn=1744-3091&rft.eissn=1744-3091&rft_id=info:doi/10.1107/S1744309110023079&rft_dat=%3Cproquest_pubme%3E754895182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731602392&rft_id=info:pmid/20693661&rfr_iscdi=true