Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease
In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical ly...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2003-04, Vol.327 (5), p.1093-1109 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1109 |
---|---|
container_issue | 5 |
container_start_page | 1093 |
container_title | Journal of molecular biology |
container_volume | 327 |
creator | Mark, Brian L. Mahuran, Don J. Cherney, Maia M. Zhao, Dalian Knapp, Spencer James, Michael N.G. |
description | In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G
M2-ganglioside (G
M2). Hex A degrades G
M2 by removing a terminal
N-acetyl-
d-galactosamine (β-GalNAc) residue, and this activity requires the G
M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4
Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2
Å) or NAG-thiazoline (2.5
Å). From these, and the known X-ray structure of the G
M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations). |
doi_str_mv | 10.1016/S0022-2836(03)00216-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2910754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228360300216X</els_id><sourcerecordid>73138757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EIkPgCCCvEFk02O1uj5sFKBl-BimIxSRSdla1Xc4YdbeD3R0xO-7ATTgIh-AkeDKjACtWpVJ975Vdj5DHnD3njMsXK8bKsiiVkM-YOMoNl8XFHTLjTDWFkkLdJbNb5IA8SOkzY6wWlbpPDngpZdkIMSPTIm7SCB1djXEy4xSRBkeXUw8D_fmjWOLXkKD3g7eQkJ68pOeDxZgVg_XDJR3XSD-GDs3UQaQnkHza6ld5vA7O0VzpGWx-ffu-ArNO9I1PmI0eknsOuoSP9vWQnL97e7ZYFqef3n9YHJ8WppJiLJpKSl4jcFexRpbWGhBCQlUDCOcApahKZW3leJO_7UQrpWlYa5Rq2raVlTgkr3a-V1PbozU4jBE6fRV9D3GjA3j972Twa30ZrnWZDef11uDp3iCGLxOmUfc-Gew6GDBMSc8FF2pezzNY70ATQ0oR3e0SzvQ2MH0TmN6moZnQN4Hpi6x78vcL_6j2CWXg9Q7AfKdrj1En43EwaH1EM2ob_H9W_AZYCamS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73138757</pqid></control><display><type>article</type><title>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mark, Brian L. ; Mahuran, Don J. ; Cherney, Maia M. ; Zhao, Dalian ; Knapp, Spencer ; James, Michael N.G.</creator><creatorcontrib>Mark, Brian L. ; Mahuran, Don J. ; Cherney, Maia M. ; Zhao, Dalian ; Knapp, Spencer ; James, Michael N.G.</creatorcontrib><description>In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G
M2-ganglioside (G
M2). Hex A degrades G
M2 by removing a terminal
N-acetyl-
d-galactosamine (β-GalNAc) residue, and this activity requires the G
M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4
Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2
Å) or NAG-thiazoline (2.5
Å). From these, and the known X-ray structure of the G
M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/S0022-2836(03)00216-X</identifier><identifier>PMID: 12662933</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; anchimeric assistance ; beta-N-Acetylhexosaminidases - chemistry ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; hexosaminidase ; Hexosaminidase A ; Hexosaminidase B ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sandhoff ; Sandhoff Disease - enzymology ; Sequence Homology, Amino Acid ; Tay-Sachs Disease - enzymology ; Tay–Sachs ; X-ray crystal structure</subject><ispartof>Journal of molecular biology, 2003-04, Vol.327 (5), p.1093-1109</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</citedby><cites>FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-2836(03)00216-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mark, Brian L.</creatorcontrib><creatorcontrib>Mahuran, Don J.</creatorcontrib><creatorcontrib>Cherney, Maia M.</creatorcontrib><creatorcontrib>Zhao, Dalian</creatorcontrib><creatorcontrib>Knapp, Spencer</creatorcontrib><creatorcontrib>James, Michael N.G.</creatorcontrib><title>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G
M2-ganglioside (G
M2). Hex A degrades G
M2 by removing a terminal
N-acetyl-
d-galactosamine (β-GalNAc) residue, and this activity requires the G
M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4
Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2
Å) or NAG-thiazoline (2.5
Å). From these, and the known X-ray structure of the G
M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).</description><subject>Amino Acid Sequence</subject><subject>anchimeric assistance</subject><subject>beta-N-Acetylhexosaminidases - chemistry</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>hexosaminidase</subject><subject>Hexosaminidase A</subject><subject>Hexosaminidase B</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Sandhoff</subject><subject>Sandhoff Disease - enzymology</subject><subject>Sequence Homology, Amino Acid</subject><subject>Tay-Sachs Disease - enzymology</subject><subject>Tay–Sachs</subject><subject>X-ray crystal structure</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0EIkPgCCCvEFk02O1uj5sFKBl-BimIxSRSdla1Xc4YdbeD3R0xO-7ATTgIh-AkeDKjACtWpVJ975Vdj5DHnD3njMsXK8bKsiiVkM-YOMoNl8XFHTLjTDWFkkLdJbNb5IA8SOkzY6wWlbpPDngpZdkIMSPTIm7SCB1djXEy4xSRBkeXUw8D_fmjWOLXkKD3g7eQkJ68pOeDxZgVg_XDJR3XSD-GDs3UQaQnkHza6ld5vA7O0VzpGWx-ffu-ArNO9I1PmI0eknsOuoSP9vWQnL97e7ZYFqef3n9YHJ8WppJiLJpKSl4jcFexRpbWGhBCQlUDCOcApahKZW3leJO_7UQrpWlYa5Rq2raVlTgkr3a-V1PbozU4jBE6fRV9D3GjA3j972Twa30ZrnWZDef11uDp3iCGLxOmUfc-Gew6GDBMSc8FF2pezzNY70ATQ0oR3e0SzvQ2MH0TmN6moZnQN4Hpi6x78vcL_6j2CWXg9Q7AfKdrj1En43EwaH1EM2ob_H9W_AZYCamS</recordid><startdate>20030411</startdate><enddate>20030411</enddate><creator>Mark, Brian L.</creator><creator>Mahuran, Don J.</creator><creator>Cherney, Maia M.</creator><creator>Zhao, Dalian</creator><creator>Knapp, Spencer</creator><creator>James, Michael N.G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030411</creationdate><title>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</title><author>Mark, Brian L. ; Mahuran, Don J. ; Cherney, Maia M. ; Zhao, Dalian ; Knapp, Spencer ; James, Michael N.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>anchimeric assistance</topic><topic>beta-N-Acetylhexosaminidases - chemistry</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>hexosaminidase</topic><topic>Hexosaminidase A</topic><topic>Hexosaminidase B</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Sandhoff</topic><topic>Sandhoff Disease - enzymology</topic><topic>Sequence Homology, Amino Acid</topic><topic>Tay-Sachs Disease - enzymology</topic><topic>Tay–Sachs</topic><topic>X-ray crystal structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mark, Brian L.</creatorcontrib><creatorcontrib>Mahuran, Don J.</creatorcontrib><creatorcontrib>Cherney, Maia M.</creatorcontrib><creatorcontrib>Zhao, Dalian</creatorcontrib><creatorcontrib>Knapp, Spencer</creatorcontrib><creatorcontrib>James, Michael N.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mark, Brian L.</au><au>Mahuran, Don J.</au><au>Cherney, Maia M.</au><au>Zhao, Dalian</au><au>Knapp, Spencer</au><au>James, Michael N.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2003-04-11</date><risdate>2003</risdate><volume>327</volume><issue>5</issue><spage>1093</spage><epage>1109</epage><pages>1093-1109</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G
M2-ganglioside (G
M2). Hex A degrades G
M2 by removing a terminal
N-acetyl-
d-galactosamine (β-GalNAc) residue, and this activity requires the G
M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4
Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2
Å) or NAG-thiazoline (2.5
Å). From these, and the known X-ray structure of the G
M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>12662933</pmid><doi>10.1016/S0022-2836(03)00216-X</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2003-04, Vol.327 (5), p.1093-1109 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2910754 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Amino Acid Sequence anchimeric assistance beta-N-Acetylhexosaminidases - chemistry Binding Sites Crystallography, X-Ray Dimerization hexosaminidase Hexosaminidase A Hexosaminidase B Humans Models, Molecular Molecular Sequence Data Protein Conformation Sandhoff Sandhoff Disease - enzymology Sequence Homology, Amino Acid Tay-Sachs Disease - enzymology Tay–Sachs X-ray crystal structure |
title | Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20of%20Human%20%CE%B2-Hexosaminidase%20B:%20Understanding%20the%20Molecular%20Basis%20of%20Sandhoff%20and%20Tay%E2%80%93Sachs%20Disease&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Mark,%20Brian%20L.&rft.date=2003-04-11&rft.volume=327&rft.issue=5&rft.spage=1093&rft.epage=1109&rft.pages=1093-1109&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/S0022-2836(03)00216-X&rft_dat=%3Cproquest_pubme%3E73138757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73138757&rft_id=info:pmid/12662933&rft_els_id=S002228360300216X&rfr_iscdi=true |