Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease

In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical ly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2003-04, Vol.327 (5), p.1093-1109
Hauptverfasser: Mark, Brian L., Mahuran, Don J., Cherney, Maia M., Zhao, Dalian, Knapp, Spencer, James, Michael N.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1109
container_issue 5
container_start_page 1093
container_title Journal of molecular biology
container_volume 327
creator Mark, Brian L.
Mahuran, Don J.
Cherney, Maia M.
Zhao, Dalian
Knapp, Spencer
James, Michael N.G.
description In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G M2-ganglioside (G M2). Hex A degrades G M2 by removing a terminal N-acetyl- d-galactosamine (β-GalNAc) residue, and this activity requires the G M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 Å) or NAG-thiazoline (2.5 Å). From these, and the known X-ray structure of the G M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).
doi_str_mv 10.1016/S0022-2836(03)00216-X
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2910754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228360300216X</els_id><sourcerecordid>73138757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EIkPgCCCvEFk02O1uj5sFKBl-BimIxSRSdla1Xc4YdbeD3R0xO-7ATTgIh-AkeDKjACtWpVJ975Vdj5DHnD3njMsXK8bKsiiVkM-YOMoNl8XFHTLjTDWFkkLdJbNb5IA8SOkzY6wWlbpPDngpZdkIMSPTIm7SCB1djXEy4xSRBkeXUw8D_fmjWOLXkKD3g7eQkJ68pOeDxZgVg_XDJR3XSD-GDs3UQaQnkHza6ld5vA7O0VzpGWx-ffu-ArNO9I1PmI0eknsOuoSP9vWQnL97e7ZYFqef3n9YHJ8WppJiLJpKSl4jcFexRpbWGhBCQlUDCOcApahKZW3leJO_7UQrpWlYa5Rq2raVlTgkr3a-V1PbozU4jBE6fRV9D3GjA3j972Twa30ZrnWZDef11uDp3iCGLxOmUfc-Gew6GDBMSc8FF2pezzNY70ATQ0oR3e0SzvQ2MH0TmN6moZnQN4Hpi6x78vcL_6j2CWXg9Q7AfKdrj1En43EwaH1EM2ob_H9W_AZYCamS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73138757</pqid></control><display><type>article</type><title>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mark, Brian L. ; Mahuran, Don J. ; Cherney, Maia M. ; Zhao, Dalian ; Knapp, Spencer ; James, Michael N.G.</creator><creatorcontrib>Mark, Brian L. ; Mahuran, Don J. ; Cherney, Maia M. ; Zhao, Dalian ; Knapp, Spencer ; James, Michael N.G.</creatorcontrib><description>In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G M2-ganglioside (G M2). Hex A degrades G M2 by removing a terminal N-acetyl- d-galactosamine (β-GalNAc) residue, and this activity requires the G M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 Å) or NAG-thiazoline (2.5 Å). From these, and the known X-ray structure of the G M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/S0022-2836(03)00216-X</identifier><identifier>PMID: 12662933</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; anchimeric assistance ; beta-N-Acetylhexosaminidases - chemistry ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; hexosaminidase ; Hexosaminidase A ; Hexosaminidase B ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sandhoff ; Sandhoff Disease - enzymology ; Sequence Homology, Amino Acid ; Tay-Sachs Disease - enzymology ; Tay–Sachs ; X-ray crystal structure</subject><ispartof>Journal of molecular biology, 2003-04, Vol.327 (5), p.1093-1109</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</citedby><cites>FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-2836(03)00216-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mark, Brian L.</creatorcontrib><creatorcontrib>Mahuran, Don J.</creatorcontrib><creatorcontrib>Cherney, Maia M.</creatorcontrib><creatorcontrib>Zhao, Dalian</creatorcontrib><creatorcontrib>Knapp, Spencer</creatorcontrib><creatorcontrib>James, Michael N.G.</creatorcontrib><title>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G M2-ganglioside (G M2). Hex A degrades G M2 by removing a terminal N-acetyl- d-galactosamine (β-GalNAc) residue, and this activity requires the G M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 Å) or NAG-thiazoline (2.5 Å). From these, and the known X-ray structure of the G M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).</description><subject>Amino Acid Sequence</subject><subject>anchimeric assistance</subject><subject>beta-N-Acetylhexosaminidases - chemistry</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>hexosaminidase</subject><subject>Hexosaminidase A</subject><subject>Hexosaminidase B</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Sandhoff</subject><subject>Sandhoff Disease - enzymology</subject><subject>Sequence Homology, Amino Acid</subject><subject>Tay-Sachs Disease - enzymology</subject><subject>Tay–Sachs</subject><subject>X-ray crystal structure</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0EIkPgCCCvEFk02O1uj5sFKBl-BimIxSRSdla1Xc4YdbeD3R0xO-7ATTgIh-AkeDKjACtWpVJ975Vdj5DHnD3njMsXK8bKsiiVkM-YOMoNl8XFHTLjTDWFkkLdJbNb5IA8SOkzY6wWlbpPDngpZdkIMSPTIm7SCB1djXEy4xSRBkeXUw8D_fmjWOLXkKD3g7eQkJ68pOeDxZgVg_XDJR3XSD-GDs3UQaQnkHza6ld5vA7O0VzpGWx-ffu-ArNO9I1PmI0eknsOuoSP9vWQnL97e7ZYFqef3n9YHJ8WppJiLJpKSl4jcFexRpbWGhBCQlUDCOcApahKZW3leJO_7UQrpWlYa5Rq2raVlTgkr3a-V1PbozU4jBE6fRV9D3GjA3j972Twa30ZrnWZDef11uDp3iCGLxOmUfc-Gew6GDBMSc8FF2pezzNY70ATQ0oR3e0SzvQ2MH0TmN6moZnQN4Hpi6x78vcL_6j2CWXg9Q7AfKdrj1En43EwaH1EM2ob_H9W_AZYCamS</recordid><startdate>20030411</startdate><enddate>20030411</enddate><creator>Mark, Brian L.</creator><creator>Mahuran, Don J.</creator><creator>Cherney, Maia M.</creator><creator>Zhao, Dalian</creator><creator>Knapp, Spencer</creator><creator>James, Michael N.G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030411</creationdate><title>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</title><author>Mark, Brian L. ; Mahuran, Don J. ; Cherney, Maia M. ; Zhao, Dalian ; Knapp, Spencer ; James, Michael N.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-946615ea1f40962ddca336a45aa3ffae63428dd4f19108f3b66c90bc889bbb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>anchimeric assistance</topic><topic>beta-N-Acetylhexosaminidases - chemistry</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>hexosaminidase</topic><topic>Hexosaminidase A</topic><topic>Hexosaminidase B</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Sandhoff</topic><topic>Sandhoff Disease - enzymology</topic><topic>Sequence Homology, Amino Acid</topic><topic>Tay-Sachs Disease - enzymology</topic><topic>Tay–Sachs</topic><topic>X-ray crystal structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mark, Brian L.</creatorcontrib><creatorcontrib>Mahuran, Don J.</creatorcontrib><creatorcontrib>Cherney, Maia M.</creatorcontrib><creatorcontrib>Zhao, Dalian</creatorcontrib><creatorcontrib>Knapp, Spencer</creatorcontrib><creatorcontrib>James, Michael N.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mark, Brian L.</au><au>Mahuran, Don J.</au><au>Cherney, Maia M.</au><au>Zhao, Dalian</au><au>Knapp, Spencer</au><au>James, Michael N.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2003-04-11</date><risdate>2003</risdate><volume>327</volume><issue>5</issue><spage>1093</spage><epage>1109</epage><pages>1093-1109</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G M2-ganglioside (G M2). Hex A degrades G M2 by removing a terminal N-acetyl- d-galactosamine (β-GalNAc) residue, and this activity requires the G M2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 Å) or NAG-thiazoline (2.5 Å). From these, and the known X-ray structure of the G M2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>12662933</pmid><doi>10.1016/S0022-2836(03)00216-X</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2003-04, Vol.327 (5), p.1093-1109
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2910754
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Amino Acid Sequence
anchimeric assistance
beta-N-Acetylhexosaminidases - chemistry
Binding Sites
Crystallography, X-Ray
Dimerization
hexosaminidase
Hexosaminidase A
Hexosaminidase B
Humans
Models, Molecular
Molecular Sequence Data
Protein Conformation
Sandhoff
Sandhoff Disease - enzymology
Sequence Homology, Amino Acid
Tay-Sachs Disease - enzymology
Tay–Sachs
X-ray crystal structure
title Crystal Structure of Human β-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay–Sachs Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20of%20Human%20%CE%B2-Hexosaminidase%20B:%20Understanding%20the%20Molecular%20Basis%20of%20Sandhoff%20and%20Tay%E2%80%93Sachs%20Disease&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Mark,%20Brian%20L.&rft.date=2003-04-11&rft.volume=327&rft.issue=5&rft.spage=1093&rft.epage=1109&rft.pages=1093-1109&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/S0022-2836(03)00216-X&rft_dat=%3Cproquest_pubme%3E73138757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73138757&rft_id=info:pmid/12662933&rft_els_id=S002228360300216X&rfr_iscdi=true