Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking
High‐resolution homology models are useful in structure‐based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The proto...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2009-02, Vol.74 (2), p.497-514 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 2 |
container_start_page | 497 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 74 |
creator | Sivasubramanian, Arvind Sircar, Aroop Chaudhury, Sidhartha Gray, Jeffrey J. |
description | High‐resolution homology models are useful in structure‐based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The protocol combines comparative modeling of canonical complementarity determining region (CDR) loop conformations and de novo loop modeling of CDR H3 conformation with simultaneous optimization of VL‐VH rigid‐body orientation and CDR backbone and side‐chain conformations. The protocol was tested on a benchmark of 54 antibody crystal structures. The median root mean square deviation (rmsd) of the antigen binding pocket comprised of all the CDR residues was 1.5 Å with 80% of the targets having an rmsd lower than 2.0 Å. The median backbone heavy atom global rmsd of the CDR H3 loop prediction was 1.6, 1.9, 2.4, 3.1, and 6.0 Å for very short (4–6 residues), short (7–9), medium (10–11), long (12–14) and very long (17–22) loops, respectively. When the set of ten top‐scoring antibody homology models are used in local ensemble docking to antigen, a moderate‐to‐high accuracy docking prediction was achieved in seven of fifteen targets. This success in computational docking with high‐resolution homology models is encouraging, but challenges still remain in modeling antibody structures for sequences with long H3 loops. This first large‐scale antibody–antigen docking study using homology models reveals the level of “functional accuracy” of these structural models toward protein engineering applications. Proteins 2009; 74:497–514. © 2008 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/prot.22309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2909601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20559410</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3229-dbff3955041f1fcb30827b937d8e5b22c51546061ea7e9f369d0ebadd0598da63</originalsourceid><addsrcrecordid>eNqFkdFv0zAQxi0EYqXjhT8A5Ym3jLMd2_ELEppYmVR1E-uGxIvlxE5qmsSZnW70v1_ajgJPPN3p7vd9Ot2H0DsMZxiAfOyDH84IoSBfoAkGKVLANHuJJpDnIqUsZyfoTYw_AYBLyl-jEyyBEyyyCVov_aMOJlm5epUGG32zGZzvkpVvfePrbdJ6YxvX1YmvEt0NrvBmm1w8JMHWIxfHmUl03zeu1Hvh4I9Yumtq2yXGl-vR4hS9qnQT7dvnOkW3F1-W51_T-dXs8vzzPHWUEJmaoqqoZAwyXOGqLCjkRBSSCpNbVhBSMswyDhxbLaysKJcGbKGNASZzozmdok8H335TtNaUthuCblQfXKvDVnnt1L-bzq1U7R8UkSD5-Lsp-vBsEPz9xsZBtS6Wtml0Z_0mKs4Fwzkm_wUJMCYzDCP4_u-Tjrf8DmIE8AF4dI3d_tmD2kWsdhGrfcTq-tvVct-NmvSgcXGwv44aHdaKCyqY-r6YqcX8x022mN2pa_oEvkWsKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20559410</pqid></control><display><type>article</type><title>Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Sivasubramanian, Arvind ; Sircar, Aroop ; Chaudhury, Sidhartha ; Gray, Jeffrey J.</creator><creatorcontrib>Sivasubramanian, Arvind ; Sircar, Aroop ; Chaudhury, Sidhartha ; Gray, Jeffrey J.</creatorcontrib><description>High‐resolution homology models are useful in structure‐based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The protocol combines comparative modeling of canonical complementarity determining region (CDR) loop conformations and de novo loop modeling of CDR H3 conformation with simultaneous optimization of VL‐VH rigid‐body orientation and CDR backbone and side‐chain conformations. The protocol was tested on a benchmark of 54 antibody crystal structures. The median root mean square deviation (rmsd) of the antigen binding pocket comprised of all the CDR residues was 1.5 Å with 80% of the targets having an rmsd lower than 2.0 Å. The median backbone heavy atom global rmsd of the CDR H3 loop prediction was 1.6, 1.9, 2.4, 3.1, and 6.0 Å for very short (4–6 residues), short (7–9), medium (10–11), long (12–14) and very long (17–22) loops, respectively. When the set of ten top‐scoring antibody homology models are used in local ensemble docking to antigen, a moderate‐to‐high accuracy docking prediction was achieved in seven of fifteen targets. This success in computational docking with high‐resolution homology models is encouraging, but challenges still remain in modeling antibody structures for sequences with long H3 loops. This first large‐scale antibody–antigen docking study using homology models reveals the level of “functional accuracy” of these structural models toward protein engineering applications. Proteins 2009; 74:497–514. © 2008 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.22309</identifier><identifier>PMID: 19062174</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Antibodies - chemistry ; antibody structure ; Antigen-Antibody Reactions ; Binding Sites, Antibody ; CDR H3 loop modeling ; comparative modeling ; Computer Simulation ; ensemble docking ; Models, Biological ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Structural Homology, Protein ; therapeutic antibodies</subject><ispartof>Proteins, structure, function, and bioinformatics, 2009-02, Vol.74 (2), p.497-514</ispartof><rights>Copyright © 2008 Wiley‐Liss, Inc.</rights><rights>Copyright 2008 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.22309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.22309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19062174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sivasubramanian, Arvind</creatorcontrib><creatorcontrib>Sircar, Aroop</creatorcontrib><creatorcontrib>Chaudhury, Sidhartha</creatorcontrib><creatorcontrib>Gray, Jeffrey J.</creatorcontrib><title>Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>High‐resolution homology models are useful in structure‐based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The protocol combines comparative modeling of canonical complementarity determining region (CDR) loop conformations and de novo loop modeling of CDR H3 conformation with simultaneous optimization of VL‐VH rigid‐body orientation and CDR backbone and side‐chain conformations. The protocol was tested on a benchmark of 54 antibody crystal structures. The median root mean square deviation (rmsd) of the antigen binding pocket comprised of all the CDR residues was 1.5 Å with 80% of the targets having an rmsd lower than 2.0 Å. The median backbone heavy atom global rmsd of the CDR H3 loop prediction was 1.6, 1.9, 2.4, 3.1, and 6.0 Å for very short (4–6 residues), short (7–9), medium (10–11), long (12–14) and very long (17–22) loops, respectively. When the set of ten top‐scoring antibody homology models are used in local ensemble docking to antigen, a moderate‐to‐high accuracy docking prediction was achieved in seven of fifteen targets. This success in computational docking with high‐resolution homology models is encouraging, but challenges still remain in modeling antibody structures for sequences with long H3 loops. This first large‐scale antibody–antigen docking study using homology models reveals the level of “functional accuracy” of these structural models toward protein engineering applications. Proteins 2009; 74:497–514. © 2008 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Antibodies - chemistry</subject><subject>antibody structure</subject><subject>Antigen-Antibody Reactions</subject><subject>Binding Sites, Antibody</subject><subject>CDR H3 loop modeling</subject><subject>comparative modeling</subject><subject>Computer Simulation</subject><subject>ensemble docking</subject><subject>Models, Biological</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Structural Homology, Protein</subject><subject>therapeutic antibodies</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdFv0zAQxi0EYqXjhT8A5Ym3jLMd2_ELEppYmVR1E-uGxIvlxE5qmsSZnW70v1_ajgJPPN3p7vd9Ot2H0DsMZxiAfOyDH84IoSBfoAkGKVLANHuJJpDnIqUsZyfoTYw_AYBLyl-jEyyBEyyyCVov_aMOJlm5epUGG32zGZzvkpVvfePrbdJ6YxvX1YmvEt0NrvBmm1w8JMHWIxfHmUl03zeu1Hvh4I9Yumtq2yXGl-vR4hS9qnQT7dvnOkW3F1-W51_T-dXs8vzzPHWUEJmaoqqoZAwyXOGqLCjkRBSSCpNbVhBSMswyDhxbLaysKJcGbKGNASZzozmdok8H335TtNaUthuCblQfXKvDVnnt1L-bzq1U7R8UkSD5-Lsp-vBsEPz9xsZBtS6Wtml0Z_0mKs4Fwzkm_wUJMCYzDCP4_u-Tjrf8DmIE8AF4dI3d_tmD2kWsdhGrfcTq-tvVct-NmvSgcXGwv44aHdaKCyqY-r6YqcX8x022mN2pa_oEvkWsKw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Sivasubramanian, Arvind</creator><creator>Sircar, Aroop</creator><creator>Chaudhury, Sidhartha</creator><creator>Gray, Jeffrey J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking</title><author>Sivasubramanian, Arvind ; Sircar, Aroop ; Chaudhury, Sidhartha ; Gray, Jeffrey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3229-dbff3955041f1fcb30827b937d8e5b22c51546061ea7e9f369d0ebadd0598da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Antibodies - chemistry</topic><topic>antibody structure</topic><topic>Antigen-Antibody Reactions</topic><topic>Binding Sites, Antibody</topic><topic>CDR H3 loop modeling</topic><topic>comparative modeling</topic><topic>Computer Simulation</topic><topic>ensemble docking</topic><topic>Models, Biological</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Structural Homology, Protein</topic><topic>therapeutic antibodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivasubramanian, Arvind</creatorcontrib><creatorcontrib>Sircar, Aroop</creatorcontrib><creatorcontrib>Chaudhury, Sidhartha</creatorcontrib><creatorcontrib>Gray, Jeffrey J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivasubramanian, Arvind</au><au>Sircar, Aroop</au><au>Chaudhury, Sidhartha</au><au>Gray, Jeffrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>74</volume><issue>2</issue><spage>497</spage><epage>514</epage><pages>497-514</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>High‐resolution homology models are useful in structure‐based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The protocol combines comparative modeling of canonical complementarity determining region (CDR) loop conformations and de novo loop modeling of CDR H3 conformation with simultaneous optimization of VL‐VH rigid‐body orientation and CDR backbone and side‐chain conformations. The protocol was tested on a benchmark of 54 antibody crystal structures. The median root mean square deviation (rmsd) of the antigen binding pocket comprised of all the CDR residues was 1.5 Å with 80% of the targets having an rmsd lower than 2.0 Å. The median backbone heavy atom global rmsd of the CDR H3 loop prediction was 1.6, 1.9, 2.4, 3.1, and 6.0 Å for very short (4–6 residues), short (7–9), medium (10–11), long (12–14) and very long (17–22) loops, respectively. When the set of ten top‐scoring antibody homology models are used in local ensemble docking to antigen, a moderate‐to‐high accuracy docking prediction was achieved in seven of fifteen targets. This success in computational docking with high‐resolution homology models is encouraging, but challenges still remain in modeling antibody structures for sequences with long H3 loops. This first large‐scale antibody–antigen docking study using homology models reveals the level of “functional accuracy” of these structural models toward protein engineering applications. Proteins 2009; 74:497–514. © 2008 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19062174</pmid><doi>10.1002/prot.22309</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2009-02, Vol.74 (2), p.497-514 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2909601 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Algorithms Antibodies - chemistry antibody structure Antigen-Antibody Reactions Binding Sites, Antibody CDR H3 loop modeling comparative modeling Computer Simulation ensemble docking Models, Biological Protein Structure, Secondary Protein Structure, Tertiary Structural Homology, Protein therapeutic antibodies |
title | Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20high-resolution%20homology%20modeling%20of%20antibody%20Fv%20regions%20and%20application%20to%20antibody-antigen%20docking&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Sivasubramanian,%20Arvind&rft.date=2009-02-01&rft.volume=74&rft.issue=2&rft.spage=497&rft.epage=514&rft.pages=497-514&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.22309&rft_dat=%3Cproquest_pubme%3E20559410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20559410&rft_id=info:pmid/19062174&rfr_iscdi=true |