Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex
Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocan...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2010-05, Vol.30 (21), p.7236-7248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7248 |
---|---|
container_issue | 21 |
container_start_page | 7236 |
container_title | The Journal of neuroscience |
container_volume | 30 |
creator | Chiu, Chiayu Q Puente, Nagore Grandes, Pedro Castillo, Pablo E |
description | Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB(1)Rs and dopamine type 2 receptors (D(2)Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D(2)Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D(2)R signaling does not diminish I-LTD. Facilitation of eCB-LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo. |
doi_str_mv | 10.1523/JNEUROSCI.0736-10.2010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2905527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733090766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-e14f0a76cfa19984df2bb588438753d296fc0bce0bad293bf469a00f46b531c23</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq2KqiwffwH5xikwtpN4c0FaFkqpEEh8nK2J44BRYgfbW3X_fb1aumrlw8gz874z9kPICYMzVnFx_vP--uXx4Wl5ewZS1EVOc2DwhcxytSl4CWyPzIBLKOpSlvvkIMZ3AJDA5Deyz6HKp4EZGa_8hKN1JrxaTUffrQZM1jvqe2pc5zU6h6113nbFaDqLyXR0GjAmq21aU0z0ZnG52Mrj2uEUTaTW0fRm6BRMH7xLOFDtQzK_j8jXHodojj_jIXn5fv28_FHcPdzcLhd3ha4ET4VhZQ8oa90ja5p52fW8bav5vBRzWYmON3WvodUGWswX0fZl3SBADm0lmObikFxsfadVm7fWxqWAg5qCHTGslUer_q84-6Ze_S_FG6gqLrPB6adB8B8rE5MabdRmGNAZv4pKCpG_T9Z17qy3nTr4GPODd1MYqA0qtUOlNqg26Q2qLDz5d8ed7C8b8QeMUJQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733090766</pqid></control><display><type>article</type><title>Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>EZB Electronic Journals Library</source><creator>Chiu, Chiayu Q ; Puente, Nagore ; Grandes, Pedro ; Castillo, Pablo E</creator><creatorcontrib>Chiu, Chiayu Q ; Puente, Nagore ; Grandes, Pedro ; Castillo, Pablo E</creatorcontrib><description>Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB(1)Rs and dopamine type 2 receptors (D(2)Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D(2)Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D(2)R signaling does not diminish I-LTD. Facilitation of eCB-LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0736-10.2010</identifier><identifier>PMID: 20505090</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Benzoxazines - pharmacology ; Cannabinoid Receptor Modulators ; Chelating Agents - pharmacology ; Dopamine - metabolism ; Dopamine Agents - pharmacology ; Egtazic Acid - analogs & derivatives ; Egtazic Acid - pharmacology ; Endocannabinoids ; Female ; gamma-Aminobutyric Acid - metabolism ; In Vitro Techniques ; Inhibitory Postsynaptic Potentials - drug effects ; Inhibitory Postsynaptic Potentials - genetics ; Isoquinolines - pharmacology ; Membrane Potentials - drug effects ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Electron, Transmission - methods ; Morpholines - pharmacology ; Naphthalenes - pharmacology ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Patch-Clamp Techniques ; Piperidines - pharmacology ; Prefrontal Cortex - cytology ; Prefrontal Cortex - ultrastructure ; Protein Kinase Inhibitors - pharmacology ; Pyrazoles - pharmacology ; Rats ; Rats, Wistar ; Receptor, Cannabinoid, CB1 - agonists ; Receptor, Cannabinoid, CB1 - deficiency ; Receptor, Cannabinoid, CB1 - metabolism ; Receptors, Dopamine D2 - metabolism ; Silver Staining - methods ; Sulfonamides - pharmacology ; Synapses - drug effects ; Synapses - physiology ; Synapses - ultrastructure</subject><ispartof>The Journal of neuroscience, 2010-05, Vol.30 (21), p.7236-7248</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/307236-13$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-e14f0a76cfa19984df2bb588438753d296fc0bce0bad293bf469a00f46b531c23</citedby><cites>FETCH-LOGICAL-c532t-e14f0a76cfa19984df2bb588438753d296fc0bce0bad293bf469a00f46b531c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905527/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905527/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20505090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chiayu Q</creatorcontrib><creatorcontrib>Puente, Nagore</creatorcontrib><creatorcontrib>Grandes, Pedro</creatorcontrib><creatorcontrib>Castillo, Pablo E</creatorcontrib><title>Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB(1)Rs and dopamine type 2 receptors (D(2)Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D(2)Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D(2)R signaling does not diminish I-LTD. Facilitation of eCB-LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Benzoxazines - pharmacology</subject><subject>Cannabinoid Receptor Modulators</subject><subject>Chelating Agents - pharmacology</subject><subject>Dopamine - metabolism</subject><subject>Dopamine Agents - pharmacology</subject><subject>Egtazic Acid - analogs & derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Endocannabinoids</subject><subject>Female</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>In Vitro Techniques</subject><subject>Inhibitory Postsynaptic Potentials - drug effects</subject><subject>Inhibitory Postsynaptic Potentials - genetics</subject><subject>Isoquinolines - pharmacology</subject><subject>Membrane Potentials - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Morpholines - pharmacology</subject><subject>Naphthalenes - pharmacology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Piperidines - pharmacology</subject><subject>Prefrontal Cortex - cytology</subject><subject>Prefrontal Cortex - ultrastructure</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptor, Cannabinoid, CB1 - agonists</subject><subject>Receptor, Cannabinoid, CB1 - deficiency</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Silver Staining - methods</subject><subject>Sulfonamides - pharmacology</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1P3DAQhq2KqiwffwH5xikwtpN4c0FaFkqpEEh8nK2J44BRYgfbW3X_fb1aumrlw8gz874z9kPICYMzVnFx_vP--uXx4Wl5ewZS1EVOc2DwhcxytSl4CWyPzIBLKOpSlvvkIMZ3AJDA5Deyz6HKp4EZGa_8hKN1JrxaTUffrQZM1jvqe2pc5zU6h6113nbFaDqLyXR0GjAmq21aU0z0ZnG52Mrj2uEUTaTW0fRm6BRMH7xLOFDtQzK_j8jXHodojj_jIXn5fv28_FHcPdzcLhd3ha4ET4VhZQ8oa90ja5p52fW8bav5vBRzWYmON3WvodUGWswX0fZl3SBADm0lmObikFxsfadVm7fWxqWAg5qCHTGslUer_q84-6Ze_S_FG6gqLrPB6adB8B8rE5MabdRmGNAZv4pKCpG_T9Z17qy3nTr4GPODd1MYqA0qtUOlNqg26Q2qLDz5d8ed7C8b8QeMUJQQ</recordid><startdate>20100526</startdate><enddate>20100526</enddate><creator>Chiu, Chiayu Q</creator><creator>Puente, Nagore</creator><creator>Grandes, Pedro</creator><creator>Castillo, Pablo E</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100526</creationdate><title>Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex</title><author>Chiu, Chiayu Q ; Puente, Nagore ; Grandes, Pedro ; Castillo, Pablo E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-e14f0a76cfa19984df2bb588438753d296fc0bce0bad293bf469a00f46b531c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Benzoxazines - pharmacology</topic><topic>Cannabinoid Receptor Modulators</topic><topic>Chelating Agents - pharmacology</topic><topic>Dopamine - metabolism</topic><topic>Dopamine Agents - pharmacology</topic><topic>Egtazic Acid - analogs & derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Endocannabinoids</topic><topic>Female</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>In Vitro Techniques</topic><topic>Inhibitory Postsynaptic Potentials - drug effects</topic><topic>Inhibitory Postsynaptic Potentials - genetics</topic><topic>Isoquinolines - pharmacology</topic><topic>Membrane Potentials - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Morpholines - pharmacology</topic><topic>Naphthalenes - pharmacology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Piperidines - pharmacology</topic><topic>Prefrontal Cortex - cytology</topic><topic>Prefrontal Cortex - ultrastructure</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptor, Cannabinoid, CB1 - agonists</topic><topic>Receptor, Cannabinoid, CB1 - deficiency</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Silver Staining - methods</topic><topic>Sulfonamides - pharmacology</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chiayu Q</creatorcontrib><creatorcontrib>Puente, Nagore</creatorcontrib><creatorcontrib>Grandes, Pedro</creatorcontrib><creatorcontrib>Castillo, Pablo E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chiayu Q</au><au>Puente, Nagore</au><au>Grandes, Pedro</au><au>Castillo, Pablo E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-05-26</date><risdate>2010</risdate><volume>30</volume><issue>21</issue><spage>7236</spage><epage>7248</epage><pages>7236-7248</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB(1)Rs and dopamine type 2 receptors (D(2)Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D(2)Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D(2)R signaling does not diminish I-LTD. Facilitation of eCB-LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20505090</pmid><doi>10.1523/JNEUROSCI.0736-10.2010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2010-05, Vol.30 (21), p.7236-7248 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2905527 |
source | MEDLINE; PMC (PubMed Central); EZB Electronic Journals Library |
subjects | Animals Animals, Newborn Benzoxazines - pharmacology Cannabinoid Receptor Modulators Chelating Agents - pharmacology Dopamine - metabolism Dopamine Agents - pharmacology Egtazic Acid - analogs & derivatives Egtazic Acid - pharmacology Endocannabinoids Female gamma-Aminobutyric Acid - metabolism In Vitro Techniques Inhibitory Postsynaptic Potentials - drug effects Inhibitory Postsynaptic Potentials - genetics Isoquinolines - pharmacology Membrane Potentials - drug effects Mice Mice, Inbred C57BL Mice, Knockout Microscopy, Electron, Transmission - methods Morpholines - pharmacology Naphthalenes - pharmacology Neuronal Plasticity - genetics Neuronal Plasticity - physiology Patch-Clamp Techniques Piperidines - pharmacology Prefrontal Cortex - cytology Prefrontal Cortex - ultrastructure Protein Kinase Inhibitors - pharmacology Pyrazoles - pharmacology Rats Rats, Wistar Receptor, Cannabinoid, CB1 - agonists Receptor, Cannabinoid, CB1 - deficiency Receptor, Cannabinoid, CB1 - metabolism Receptors, Dopamine D2 - metabolism Silver Staining - methods Sulfonamides - pharmacology Synapses - drug effects Synapses - physiology Synapses - ultrastructure |
title | Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopaminergic%20modulation%20of%20endocannabinoid-mediated%20plasticity%20at%20GABAergic%20synapses%20in%20the%20prefrontal%20cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Chiu,%20Chiayu%20Q&rft.date=2010-05-26&rft.volume=30&rft.issue=21&rft.spage=7236&rft.epage=7248&rft.pages=7236-7248&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0736-10.2010&rft_dat=%3Cproquest_pubme%3E733090766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733090766&rft_id=info:pmid/20505090&rfr_iscdi=true |