Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids

We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2010-07, Vol.99 (2), p.472-479
Hauptverfasser: Sakuma, Yuka, Taniguchi, Takashi, Imai, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 472
container_title Biophysical journal
container_volume 99
creator Sakuma, Yuka
Taniguchi, Takashi
Imai, Masayuki
description We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.
doi_str_mv 10.1016/j.bpj.2010.03.064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2905078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349510004327</els_id><sourcerecordid>864414782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzoD_AijRdPPVY-uxtBWAdnXRhQ8OMa0kmNm6YnGZPuhf33ZpjdRT3oKRR56qWqHkJeUFhRoOrNsOoPw4pBqYGvQIlHZEGlYDVAqx6TBQComotOnpHznAcAyiTQp-SMFZaDkguy-RwTVpuY9mbyMVQ-VKZ674NJt9WlN2GqvmP2dsTqKrjZoqv622odA9Zfrs2hlFt_8C4_I092Zsz4_O5dkm-bD1_XH-vtp8ur9cW2trKRU931RqIzvWuFaRw3qrUtsFYayrlx1Eqxs5bTtkPWCcoaoXqKfMfKHg1ljvEleXfKPcz9Hp3FMCUz6kPy-zKxjsbrP3-Cv9Y_4o1mHUho2hLw-i4gxZ8z5knvfbY4jiZgnLNulRBUNC37L9lwASA4bwr56i9yiHMK5Q5HiCvVCSgQPUE2xZwT7h6GpqCPNvWgi019tKmB66OhJXn5-7YPHff6CvD2BGC5-Y3HpLP1GIomn9BO2kX_j_hfdwyt8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734366940</pqid></control><display><type>article</type><title>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sakuma, Yuka ; Taniguchi, Takashi ; Imai, Masayuki</creator><creatorcontrib>Sakuma, Yuka ; Taniguchi, Takashi ; Imai, Masayuki</creatorcontrib><description>We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2010.03.064</identifier><identifier>PMID: 20643065</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; Biophysics ; Curvature ; Cylinders ; Deformation ; Lipids ; Mathematical models ; Membrane ; Membranes ; Models, Biological ; Phospholipid Ethers - chemistry ; Porosity ; Temperature effects ; Transition temperature ; Unilamellar Liposomes - chemistry ; Vesicles</subject><ispartof>Biophysical journal, 2010-07, Vol.99 (2), p.472-479</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 21, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</citedby><cites>FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905078/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2010.03.064$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20643065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakuma, Yuka</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Imai, Masayuki</creatorcontrib><title>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>Biophysics</subject><subject>Curvature</subject><subject>Cylinders</subject><subject>Deformation</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Phospholipid Ethers - chemistry</subject><subject>Porosity</subject><subject>Temperature effects</subject><subject>Transition temperature</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Vesicles</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7uzoD_AijRdPPVY-uxtBWAdnXRhQ8OMa0kmNm6YnGZPuhf33ZpjdRT3oKRR56qWqHkJeUFhRoOrNsOoPw4pBqYGvQIlHZEGlYDVAqx6TBQComotOnpHznAcAyiTQp-SMFZaDkguy-RwTVpuY9mbyMVQ-VKZ674NJt9WlN2GqvmP2dsTqKrjZoqv622odA9Zfrs2hlFt_8C4_I092Zsz4_O5dkm-bD1_XH-vtp8ur9cW2trKRU931RqIzvWuFaRw3qrUtsFYayrlx1Eqxs5bTtkPWCcoaoXqKfMfKHg1ljvEleXfKPcz9Hp3FMCUz6kPy-zKxjsbrP3-Cv9Y_4o1mHUho2hLw-i4gxZ8z5knvfbY4jiZgnLNulRBUNC37L9lwASA4bwr56i9yiHMK5Q5HiCvVCSgQPUE2xZwT7h6GpqCPNvWgi019tKmB66OhJXn5-7YPHff6CvD2BGC5-Y3HpLP1GIomn9BO2kX_j_hfdwyt8w</recordid><startdate>20100721</startdate><enddate>20100721</enddate><creator>Sakuma, Yuka</creator><creator>Taniguchi, Takashi</creator><creator>Imai, Masayuki</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100721</creationdate><title>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</title><author>Sakuma, Yuka ; Taniguchi, Takashi ; Imai, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>Biophysics</topic><topic>Curvature</topic><topic>Cylinders</topic><topic>Deformation</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Phospholipid Ethers - chemistry</topic><topic>Porosity</topic><topic>Temperature effects</topic><topic>Transition temperature</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, Yuka</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Imai, Masayuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, Yuka</au><au>Taniguchi, Takashi</au><au>Imai, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-07-21</date><risdate>2010</risdate><volume>99</volume><issue>2</issue><spage>472</spage><epage>479</epage><pages>472-479</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20643065</pmid><doi>10.1016/j.bpj.2010.03.064</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2010-07, Vol.99 (2), p.472-479
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2905078
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 1,2-Dipalmitoylphosphatidylcholine - chemistry
Biophysics
Curvature
Cylinders
Deformation
Lipids
Mathematical models
Membrane
Membranes
Models, Biological
Phospholipid Ethers - chemistry
Porosity
Temperature effects
Transition temperature
Unilamellar Liposomes - chemistry
Vesicles
title Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20Formation%20in%20a%20Binary%20Giant%20Vesicle%20Induced%20by%20Cone-Shaped%20Lipids&rft.jtitle=Biophysical%20journal&rft.au=Sakuma,%20Yuka&rft.date=2010-07-21&rft.volume=99&rft.issue=2&rft.spage=472&rft.epage=479&rft.pages=472-479&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2010.03.064&rft_dat=%3Cproquest_pubme%3E864414782%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734366940&rft_id=info:pmid/20643065&rft_els_id=S0006349510004327&rfr_iscdi=true