Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids
We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2010-07, Vol.99 (2), p.472-479 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 2 |
container_start_page | 472 |
container_title | Biophysical journal |
container_volume | 99 |
creator | Sakuma, Yuka Taniguchi, Takashi Imai, Masayuki |
description | We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore. |
doi_str_mv | 10.1016/j.bpj.2010.03.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2905078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349510004327</els_id><sourcerecordid>864414782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzoD_AijRdPPVY-uxtBWAdnXRhQ8OMa0kmNm6YnGZPuhf33ZpjdRT3oKRR56qWqHkJeUFhRoOrNsOoPw4pBqYGvQIlHZEGlYDVAqx6TBQComotOnpHznAcAyiTQp-SMFZaDkguy-RwTVpuY9mbyMVQ-VKZ674NJt9WlN2GqvmP2dsTqKrjZoqv622odA9Zfrs2hlFt_8C4_I092Zsz4_O5dkm-bD1_XH-vtp8ur9cW2trKRU931RqIzvWuFaRw3qrUtsFYayrlx1Eqxs5bTtkPWCcoaoXqKfMfKHg1ljvEleXfKPcz9Hp3FMCUz6kPy-zKxjsbrP3-Cv9Y_4o1mHUho2hLw-i4gxZ8z5knvfbY4jiZgnLNulRBUNC37L9lwASA4bwr56i9yiHMK5Q5HiCvVCSgQPUE2xZwT7h6GpqCPNvWgi019tKmB66OhJXn5-7YPHff6CvD2BGC5-Y3HpLP1GIomn9BO2kX_j_hfdwyt8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734366940</pqid></control><display><type>article</type><title>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sakuma, Yuka ; Taniguchi, Takashi ; Imai, Masayuki</creator><creatorcontrib>Sakuma, Yuka ; Taniguchi, Takashi ; Imai, Masayuki</creatorcontrib><description>We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2010.03.064</identifier><identifier>PMID: 20643065</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; Biophysics ; Curvature ; Cylinders ; Deformation ; Lipids ; Mathematical models ; Membrane ; Membranes ; Models, Biological ; Phospholipid Ethers - chemistry ; Porosity ; Temperature effects ; Transition temperature ; Unilamellar Liposomes - chemistry ; Vesicles</subject><ispartof>Biophysical journal, 2010-07, Vol.99 (2), p.472-479</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 21, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</citedby><cites>FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905078/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2010.03.064$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20643065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakuma, Yuka</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Imai, Masayuki</creatorcontrib><title>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>Biophysics</subject><subject>Curvature</subject><subject>Cylinders</subject><subject>Deformation</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Phospholipid Ethers - chemistry</subject><subject>Porosity</subject><subject>Temperature effects</subject><subject>Transition temperature</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Vesicles</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7uzoD_AijRdPPVY-uxtBWAdnXRhQ8OMa0kmNm6YnGZPuhf33ZpjdRT3oKRR56qWqHkJeUFhRoOrNsOoPw4pBqYGvQIlHZEGlYDVAqx6TBQComotOnpHznAcAyiTQp-SMFZaDkguy-RwTVpuY9mbyMVQ-VKZ674NJt9WlN2GqvmP2dsTqKrjZoqv622odA9Zfrs2hlFt_8C4_I092Zsz4_O5dkm-bD1_XH-vtp8ur9cW2trKRU931RqIzvWuFaRw3qrUtsFYayrlx1Eqxs5bTtkPWCcoaoXqKfMfKHg1ljvEleXfKPcz9Hp3FMCUz6kPy-zKxjsbrP3-Cv9Y_4o1mHUho2hLw-i4gxZ8z5knvfbY4jiZgnLNulRBUNC37L9lwASA4bwr56i9yiHMK5Q5HiCvVCSgQPUE2xZwT7h6GpqCPNvWgi019tKmB66OhJXn5-7YPHff6CvD2BGC5-Y3HpLP1GIomn9BO2kX_j_hfdwyt8w</recordid><startdate>20100721</startdate><enddate>20100721</enddate><creator>Sakuma, Yuka</creator><creator>Taniguchi, Takashi</creator><creator>Imai, Masayuki</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100721</creationdate><title>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</title><author>Sakuma, Yuka ; Taniguchi, Takashi ; Imai, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-9ba5edabd84a7d3a68c80285a133ad1c54fcc3189e29412746b1e3f2006712d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>Biophysics</topic><topic>Curvature</topic><topic>Cylinders</topic><topic>Deformation</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Phospholipid Ethers - chemistry</topic><topic>Porosity</topic><topic>Temperature effects</topic><topic>Transition temperature</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, Yuka</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Imai, Masayuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, Yuka</au><au>Taniguchi, Takashi</au><au>Imai, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-07-21</date><risdate>2010</risdate><volume>99</volume><issue>2</issue><spage>472</spage><epage>479</epage><pages>472-479</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20643065</pmid><doi>10.1016/j.bpj.2010.03.064</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2010-07, Vol.99 (2), p.472-479 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2905078 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 1,2-Dipalmitoylphosphatidylcholine - chemistry Biophysics Curvature Cylinders Deformation Lipids Mathematical models Membrane Membranes Models, Biological Phospholipid Ethers - chemistry Porosity Temperature effects Transition temperature Unilamellar Liposomes - chemistry Vesicles |
title | Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20Formation%20in%20a%20Binary%20Giant%20Vesicle%20Induced%20by%20Cone-Shaped%20Lipids&rft.jtitle=Biophysical%20journal&rft.au=Sakuma,%20Yuka&rft.date=2010-07-21&rft.volume=99&rft.issue=2&rft.spage=472&rft.epage=479&rft.pages=472-479&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2010.03.064&rft_dat=%3Cproquest_pubme%3E864414782%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734366940&rft_id=info:pmid/20643065&rft_els_id=S0006349510004327&rfr_iscdi=true |