The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons

Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2010-07, Vol.518 (14), p.2873-2901
Hauptverfasser: Horita, Haruhito, Wada, Kazuhiro, Rivas, Miriam V., Hara, Erina, Jarvis, Erich D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2901
container_issue 14
container_start_page 2873
container_title Journal of comparative neurology (1911)
container_volume 518
creator Horita, Haruhito
Wada, Kazuhiro
Rivas, Miriam V.
Hara, Erina
Jarvis, Erich D.
description Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/cne.22370
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776648615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEokvhwBdAljgAh7RjO_6TCxJalYJUFiQKlbhY3mSydUmcxY6B_fZ42XYFSMDJluc3z_PsVxQPKRxRAHbceDxijCu4Vcwo1LKstaS3i1mu0bKupToo7sV4BQB1zfXd4oCBAFlpmBV4fomkTXFNiRsGbJ2dkKAN_Yas0CNxkQRcpT4ft2S5Id5OKdiexMkNqXdkHbAdB-etn3KL8ySij2PYbtdpIh5TGH28X9zpbB_xwfV6WHx4eXI-f1WevT19PX9xVjZSCCgpB6BML-u6og1vlQClLLNSdaqFphXcLi1lHepKSUkVA-gEb3Unsl-urOCHxfOd7jots5kG_ZSHNevgBhs2ZrTO_F7x7tKsxq-G1VBpqrPAk2uBMH5JGCczuNhg31uPY4pGiUoIKvN1_yU5h5oxWmXy6T9JqrKbKv_Ydv7Hf6BXYwo-P1mmpNQUqN5Sz3ZUE8YYA3Z7gxTMNhAmB8L8DERmH_36InvyJgEZON4B31yPm78rmfni5Eay3HW4OOH3fYcNn41UXAlzsTg1F2_mn6p3HxfmPf8BxjvOcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766810185</pqid></control><display><type>article</type><title>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Horita, Haruhito ; Wada, Kazuhiro ; Rivas, Miriam V. ; Hara, Erina ; Jarvis, Erich D.</creator><creatorcontrib>Horita, Haruhito ; Wada, Kazuhiro ; Rivas, Miriam V. ; Hara, Erina ; Jarvis, Erich D.</creatorcontrib><description>Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.22370</identifier><identifier>PMID: 20506480</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; auditory ; Auditory Perception - physiology ; Avian Proteins - genetics ; Avian Proteins - metabolism ; bird ; Brain - metabolism ; brain evolution ; brain organization ; cl100 ; Columbidae ; Dual Specificity Phosphatase 1 - genetics ; Dual Specificity Phosphatase 1 - metabolism ; Early Growth Response Protein 1 - genetics ; Early Growth Response Protein 1 - metabolism ; Gene Expression Regulation ; hummingbird ; hvh1 ; Male ; Melopsittacus ; Mice ; mkp-1 ; mkp1 ; Motor Activity - physiology ; motor behavior ; motor pathways ; neural activity ; Neurons, Afferent - metabolism ; parrot ; primary sensory ; ptpn10 ; ring dove ; somatosensory ; songbird ; Songbirds ; Species Specificity ; Telencephalon - metabolism ; Thalamus - metabolism ; vision ; Visual Perception - physiology ; ZENK</subject><ispartof>Journal of comparative neurology (1911), 2010-07, Vol.518 (14), p.2873-2901</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</citedby><cites>FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.22370$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.22370$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horita, Haruhito</creatorcontrib><creatorcontrib>Wada, Kazuhiro</creatorcontrib><creatorcontrib>Rivas, Miriam V.</creatorcontrib><creatorcontrib>Hara, Erina</creatorcontrib><creatorcontrib>Jarvis, Erich D.</creatorcontrib><title>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>auditory</subject><subject>Auditory Perception - physiology</subject><subject>Avian Proteins - genetics</subject><subject>Avian Proteins - metabolism</subject><subject>bird</subject><subject>Brain - metabolism</subject><subject>brain evolution</subject><subject>brain organization</subject><subject>cl100</subject><subject>Columbidae</subject><subject>Dual Specificity Phosphatase 1 - genetics</subject><subject>Dual Specificity Phosphatase 1 - metabolism</subject><subject>Early Growth Response Protein 1 - genetics</subject><subject>Early Growth Response Protein 1 - metabolism</subject><subject>Gene Expression Regulation</subject><subject>hummingbird</subject><subject>hvh1</subject><subject>Male</subject><subject>Melopsittacus</subject><subject>Mice</subject><subject>mkp-1</subject><subject>mkp1</subject><subject>Motor Activity - physiology</subject><subject>motor behavior</subject><subject>motor pathways</subject><subject>neural activity</subject><subject>Neurons, Afferent - metabolism</subject><subject>parrot</subject><subject>primary sensory</subject><subject>ptpn10</subject><subject>ring dove</subject><subject>somatosensory</subject><subject>songbird</subject><subject>Songbirds</subject><subject>Species Specificity</subject><subject>Telencephalon - metabolism</subject><subject>Thalamus - metabolism</subject><subject>vision</subject><subject>Visual Perception - physiology</subject><subject>ZENK</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9v1DAQxSMEokvhwBdAljgAh7RjO_6TCxJalYJUFiQKlbhY3mSydUmcxY6B_fZ42XYFSMDJluc3z_PsVxQPKRxRAHbceDxijCu4Vcwo1LKstaS3i1mu0bKupToo7sV4BQB1zfXd4oCBAFlpmBV4fomkTXFNiRsGbJ2dkKAN_Yas0CNxkQRcpT4ft2S5Id5OKdiexMkNqXdkHbAdB-etn3KL8ySij2PYbtdpIh5TGH28X9zpbB_xwfV6WHx4eXI-f1WevT19PX9xVjZSCCgpB6BML-u6og1vlQClLLNSdaqFphXcLi1lHepKSUkVA-gEb3Unsl-urOCHxfOd7jots5kG_ZSHNevgBhs2ZrTO_F7x7tKsxq-G1VBpqrPAk2uBMH5JGCczuNhg31uPY4pGiUoIKvN1_yU5h5oxWmXy6T9JqrKbKv_Ydv7Hf6BXYwo-P1mmpNQUqN5Sz3ZUE8YYA3Z7gxTMNhAmB8L8DERmH_36InvyJgEZON4B31yPm78rmfni5Eay3HW4OOH3fYcNn41UXAlzsTg1F2_mn6p3HxfmPf8BxjvOcA</recordid><startdate>20100715</startdate><enddate>20100715</enddate><creator>Horita, Haruhito</creator><creator>Wada, Kazuhiro</creator><creator>Rivas, Miriam V.</creator><creator>Hara, Erina</creator><creator>Jarvis, Erich D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100715</creationdate><title>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</title><author>Horita, Haruhito ; Wada, Kazuhiro ; Rivas, Miriam V. ; Hara, Erina ; Jarvis, Erich D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>auditory</topic><topic>Auditory Perception - physiology</topic><topic>Avian Proteins - genetics</topic><topic>Avian Proteins - metabolism</topic><topic>bird</topic><topic>Brain - metabolism</topic><topic>brain evolution</topic><topic>brain organization</topic><topic>cl100</topic><topic>Columbidae</topic><topic>Dual Specificity Phosphatase 1 - genetics</topic><topic>Dual Specificity Phosphatase 1 - metabolism</topic><topic>Early Growth Response Protein 1 - genetics</topic><topic>Early Growth Response Protein 1 - metabolism</topic><topic>Gene Expression Regulation</topic><topic>hummingbird</topic><topic>hvh1</topic><topic>Male</topic><topic>Melopsittacus</topic><topic>Mice</topic><topic>mkp-1</topic><topic>mkp1</topic><topic>Motor Activity - physiology</topic><topic>motor behavior</topic><topic>motor pathways</topic><topic>neural activity</topic><topic>Neurons, Afferent - metabolism</topic><topic>parrot</topic><topic>primary sensory</topic><topic>ptpn10</topic><topic>ring dove</topic><topic>somatosensory</topic><topic>songbird</topic><topic>Songbirds</topic><topic>Species Specificity</topic><topic>Telencephalon - metabolism</topic><topic>Thalamus - metabolism</topic><topic>vision</topic><topic>Visual Perception - physiology</topic><topic>ZENK</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horita, Haruhito</creatorcontrib><creatorcontrib>Wada, Kazuhiro</creatorcontrib><creatorcontrib>Rivas, Miriam V.</creatorcontrib><creatorcontrib>Hara, Erina</creatorcontrib><creatorcontrib>Jarvis, Erich D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horita, Haruhito</au><au>Wada, Kazuhiro</au><au>Rivas, Miriam V.</au><au>Hara, Erina</au><au>Jarvis, Erich D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2010-07-15</date><risdate>2010</risdate><volume>518</volume><issue>14</issue><spage>2873</spage><epage>2901</epage><pages>2873-2901</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506480</pmid><doi>10.1002/cne.22370</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2010-07, Vol.518 (14), p.2873-2901
issn 0021-9967
1096-9861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904818
source MEDLINE; Access via Wiley Online Library
subjects Animals
auditory
Auditory Perception - physiology
Avian Proteins - genetics
Avian Proteins - metabolism
bird
Brain - metabolism
brain evolution
brain organization
cl100
Columbidae
Dual Specificity Phosphatase 1 - genetics
Dual Specificity Phosphatase 1 - metabolism
Early Growth Response Protein 1 - genetics
Early Growth Response Protein 1 - metabolism
Gene Expression Regulation
hummingbird
hvh1
Male
Melopsittacus
Mice
mkp-1
mkp1
Motor Activity - physiology
motor behavior
motor pathways
neural activity
Neurons, Afferent - metabolism
parrot
primary sensory
ptpn10
ring dove
somatosensory
songbird
Songbirds
Species Specificity
Telencephalon - metabolism
Thalamus - metabolism
vision
Visual Perception - physiology
ZENK
title The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dusp1%20immediate%20early%20gene%20is%20regulated%20by%20natural%20stimuli%20predominantly%20in%20sensory%20input%20neurons&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Horita,%20Haruhito&rft.date=2010-07-15&rft.volume=518&rft.issue=14&rft.spage=2873&rft.epage=2901&rft.pages=2873-2901&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.22370&rft_dat=%3Cproquest_pubme%3E1776648615%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766810185&rft_id=info:pmid/20506480&rfr_iscdi=true