The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons
Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, w...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2010-07, Vol.518 (14), p.2873-2901 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2901 |
---|---|
container_issue | 14 |
container_start_page | 2873 |
container_title | Journal of comparative neurology (1911) |
container_volume | 518 |
creator | Horita, Haruhito Wada, Kazuhiro Rivas, Miriam V. Hara, Erina Jarvis, Erich D. |
description | Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/cne.22370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776648615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEokvhwBdAljgAh7RjO_6TCxJalYJUFiQKlbhY3mSydUmcxY6B_fZ42XYFSMDJluc3z_PsVxQPKRxRAHbceDxijCu4Vcwo1LKstaS3i1mu0bKupToo7sV4BQB1zfXd4oCBAFlpmBV4fomkTXFNiRsGbJ2dkKAN_Yas0CNxkQRcpT4ft2S5Id5OKdiexMkNqXdkHbAdB-etn3KL8ySij2PYbtdpIh5TGH28X9zpbB_xwfV6WHx4eXI-f1WevT19PX9xVjZSCCgpB6BML-u6og1vlQClLLNSdaqFphXcLi1lHepKSUkVA-gEb3Unsl-urOCHxfOd7jots5kG_ZSHNevgBhs2ZrTO_F7x7tKsxq-G1VBpqrPAk2uBMH5JGCczuNhg31uPY4pGiUoIKvN1_yU5h5oxWmXy6T9JqrKbKv_Ydv7Hf6BXYwo-P1mmpNQUqN5Sz3ZUE8YYA3Z7gxTMNhAmB8L8DERmH_36InvyJgEZON4B31yPm78rmfni5Eay3HW4OOH3fYcNn41UXAlzsTg1F2_mn6p3HxfmPf8BxjvOcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766810185</pqid></control><display><type>article</type><title>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Horita, Haruhito ; Wada, Kazuhiro ; Rivas, Miriam V. ; Hara, Erina ; Jarvis, Erich D.</creator><creatorcontrib>Horita, Haruhito ; Wada, Kazuhiro ; Rivas, Miriam V. ; Hara, Erina ; Jarvis, Erich D.</creatorcontrib><description>Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.22370</identifier><identifier>PMID: 20506480</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; auditory ; Auditory Perception - physiology ; Avian Proteins - genetics ; Avian Proteins - metabolism ; bird ; Brain - metabolism ; brain evolution ; brain organization ; cl100 ; Columbidae ; Dual Specificity Phosphatase 1 - genetics ; Dual Specificity Phosphatase 1 - metabolism ; Early Growth Response Protein 1 - genetics ; Early Growth Response Protein 1 - metabolism ; Gene Expression Regulation ; hummingbird ; hvh1 ; Male ; Melopsittacus ; Mice ; mkp-1 ; mkp1 ; Motor Activity - physiology ; motor behavior ; motor pathways ; neural activity ; Neurons, Afferent - metabolism ; parrot ; primary sensory ; ptpn10 ; ring dove ; somatosensory ; songbird ; Songbirds ; Species Specificity ; Telencephalon - metabolism ; Thalamus - metabolism ; vision ; Visual Perception - physiology ; ZENK</subject><ispartof>Journal of comparative neurology (1911), 2010-07, Vol.518 (14), p.2873-2901</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</citedby><cites>FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.22370$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.22370$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horita, Haruhito</creatorcontrib><creatorcontrib>Wada, Kazuhiro</creatorcontrib><creatorcontrib>Rivas, Miriam V.</creatorcontrib><creatorcontrib>Hara, Erina</creatorcontrib><creatorcontrib>Jarvis, Erich D.</creatorcontrib><title>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>auditory</subject><subject>Auditory Perception - physiology</subject><subject>Avian Proteins - genetics</subject><subject>Avian Proteins - metabolism</subject><subject>bird</subject><subject>Brain - metabolism</subject><subject>brain evolution</subject><subject>brain organization</subject><subject>cl100</subject><subject>Columbidae</subject><subject>Dual Specificity Phosphatase 1 - genetics</subject><subject>Dual Specificity Phosphatase 1 - metabolism</subject><subject>Early Growth Response Protein 1 - genetics</subject><subject>Early Growth Response Protein 1 - metabolism</subject><subject>Gene Expression Regulation</subject><subject>hummingbird</subject><subject>hvh1</subject><subject>Male</subject><subject>Melopsittacus</subject><subject>Mice</subject><subject>mkp-1</subject><subject>mkp1</subject><subject>Motor Activity - physiology</subject><subject>motor behavior</subject><subject>motor pathways</subject><subject>neural activity</subject><subject>Neurons, Afferent - metabolism</subject><subject>parrot</subject><subject>primary sensory</subject><subject>ptpn10</subject><subject>ring dove</subject><subject>somatosensory</subject><subject>songbird</subject><subject>Songbirds</subject><subject>Species Specificity</subject><subject>Telencephalon - metabolism</subject><subject>Thalamus - metabolism</subject><subject>vision</subject><subject>Visual Perception - physiology</subject><subject>ZENK</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9v1DAQxSMEokvhwBdAljgAh7RjO_6TCxJalYJUFiQKlbhY3mSydUmcxY6B_fZ42XYFSMDJluc3z_PsVxQPKRxRAHbceDxijCu4Vcwo1LKstaS3i1mu0bKupToo7sV4BQB1zfXd4oCBAFlpmBV4fomkTXFNiRsGbJ2dkKAN_Yas0CNxkQRcpT4ft2S5Id5OKdiexMkNqXdkHbAdB-etn3KL8ySij2PYbtdpIh5TGH28X9zpbB_xwfV6WHx4eXI-f1WevT19PX9xVjZSCCgpB6BML-u6og1vlQClLLNSdaqFphXcLi1lHepKSUkVA-gEb3Unsl-urOCHxfOd7jots5kG_ZSHNevgBhs2ZrTO_F7x7tKsxq-G1VBpqrPAk2uBMH5JGCczuNhg31uPY4pGiUoIKvN1_yU5h5oxWmXy6T9JqrKbKv_Ydv7Hf6BXYwo-P1mmpNQUqN5Sz3ZUE8YYA3Z7gxTMNhAmB8L8DERmH_36InvyJgEZON4B31yPm78rmfni5Eay3HW4OOH3fYcNn41UXAlzsTg1F2_mn6p3HxfmPf8BxjvOcA</recordid><startdate>20100715</startdate><enddate>20100715</enddate><creator>Horita, Haruhito</creator><creator>Wada, Kazuhiro</creator><creator>Rivas, Miriam V.</creator><creator>Hara, Erina</creator><creator>Jarvis, Erich D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100715</creationdate><title>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</title><author>Horita, Haruhito ; Wada, Kazuhiro ; Rivas, Miriam V. ; Hara, Erina ; Jarvis, Erich D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6550-1300128b9941c3d75077a2a67f7d0cd53aba12fe8476617200f53d8f598637a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>auditory</topic><topic>Auditory Perception - physiology</topic><topic>Avian Proteins - genetics</topic><topic>Avian Proteins - metabolism</topic><topic>bird</topic><topic>Brain - metabolism</topic><topic>brain evolution</topic><topic>brain organization</topic><topic>cl100</topic><topic>Columbidae</topic><topic>Dual Specificity Phosphatase 1 - genetics</topic><topic>Dual Specificity Phosphatase 1 - metabolism</topic><topic>Early Growth Response Protein 1 - genetics</topic><topic>Early Growth Response Protein 1 - metabolism</topic><topic>Gene Expression Regulation</topic><topic>hummingbird</topic><topic>hvh1</topic><topic>Male</topic><topic>Melopsittacus</topic><topic>Mice</topic><topic>mkp-1</topic><topic>mkp1</topic><topic>Motor Activity - physiology</topic><topic>motor behavior</topic><topic>motor pathways</topic><topic>neural activity</topic><topic>Neurons, Afferent - metabolism</topic><topic>parrot</topic><topic>primary sensory</topic><topic>ptpn10</topic><topic>ring dove</topic><topic>somatosensory</topic><topic>songbird</topic><topic>Songbirds</topic><topic>Species Specificity</topic><topic>Telencephalon - metabolism</topic><topic>Thalamus - metabolism</topic><topic>vision</topic><topic>Visual Perception - physiology</topic><topic>ZENK</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horita, Haruhito</creatorcontrib><creatorcontrib>Wada, Kazuhiro</creatorcontrib><creatorcontrib>Rivas, Miriam V.</creatorcontrib><creatorcontrib>Hara, Erina</creatorcontrib><creatorcontrib>Jarvis, Erich D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horita, Haruhito</au><au>Wada, Kazuhiro</au><au>Rivas, Miriam V.</au><au>Hara, Erina</au><au>Jarvis, Erich D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2010-07-15</date><risdate>2010</risdate><volume>518</volume><issue>14</issue><spage>2873</spage><epage>2901</epage><pages>2873-2901</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506480</pmid><doi>10.1002/cne.22370</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2010-07, Vol.518 (14), p.2873-2901 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904818 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals auditory Auditory Perception - physiology Avian Proteins - genetics Avian Proteins - metabolism bird Brain - metabolism brain evolution brain organization cl100 Columbidae Dual Specificity Phosphatase 1 - genetics Dual Specificity Phosphatase 1 - metabolism Early Growth Response Protein 1 - genetics Early Growth Response Protein 1 - metabolism Gene Expression Regulation hummingbird hvh1 Male Melopsittacus Mice mkp-1 mkp1 Motor Activity - physiology motor behavior motor pathways neural activity Neurons, Afferent - metabolism parrot primary sensory ptpn10 ring dove somatosensory songbird Songbirds Species Specificity Telencephalon - metabolism Thalamus - metabolism vision Visual Perception - physiology ZENK |
title | The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dusp1%20immediate%20early%20gene%20is%20regulated%20by%20natural%20stimuli%20predominantly%20in%20sensory%20input%20neurons&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Horita,%20Haruhito&rft.date=2010-07-15&rft.volume=518&rft.issue=14&rft.spage=2873&rft.epage=2901&rft.pages=2873-2901&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.22370&rft_dat=%3Cproquest_pubme%3E1776648615%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766810185&rft_id=info:pmid/20506480&rfr_iscdi=true |