Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe

For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2010-07, Vol.82 (14), p.6132-6138
Hauptverfasser: Shi, Xinghua, Lim, John, Ha, Taekjip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6138
container_issue 14
container_start_page 6132
container_title Analytical chemistry (Washington)
container_volume 82
creator Shi, Xinghua
Lim, John
Ha, Taekjip
description For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies.
doi_str_mv 10.1021/ac1008749
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2105950981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-8219fe1289bd68dda20baf7f8a3569eef734c99b6009059d41437cff1fb28f923</originalsourceid><addsrcrecordid>eNplkc1u1DAUhS0EotPCghdAFhKqWASuHSexWSBVpYVKRUUMrCPHuZ5x5cTFTgrzELwzCR1m-FlZ9v18zzk6hDxh8JIBZ6-0YQCyEuoeWbCCQ1ZKye-TBQDkGa8ADshhStcAjAErH5IDDoXMq7JckB8nxrXOOqMHF3oaLB3WSK--b1bY06XRt9ivXL-iy00asKNuepyuHrMPwaMZPdJzP4aIyWBvkC6HsXWYXtOLGRxGusQ-zf-_uWFNNf00y3Q4RGfo21H77KxzKc3KH2No8BF5YLVP-Hh7HpEv52efT99nl1fvLk5PLjMtSjZkkjNlkXGpmraUbas5NNpWVuq8KBWirXJhlGpKAAWFagUTeWWsZbbh0iqeH5E3d3tvxqbDdvI-RO3rm-g6HTd10K7-e9K7db0KtzVXIIp8XnC8XRDD1xHTUE85DHqvewxjqishlWTlL6ln_5DXYYz9lG6CGCtYJfIJenEHmRhSimh3VhjUc8X1ruKJffqn9x35u9MJeL4FdDLa26h749Key0FMIcSe0ybtTf0v-BMpIbt2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741151743</pqid></control><display><type>article</type><title>Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe</title><source>MEDLINE</source><source>ACS Publications</source><creator>Shi, Xinghua ; Lim, John ; Ha, Taekjip</creator><creatorcontrib>Shi, Xinghua ; Lim, John ; Ha, Taekjip</creatorcontrib><description>For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac1008749</identifier><identifier>PMID: 20583766</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Benzopyrans - chemistry ; Catalase - metabolism ; Chemistry ; Enzymes ; Exact sciences and technology ; Fluorescence ; Fluorescent Dyes - chemistry ; Gluconates - metabolism ; Glucose ; Glucose Oxidase - metabolism ; Molecules ; Naphthols - chemistry ; Oxygen ; Oxygen - chemistry ; Photobleaching ; Rhodamines - chemistry ; Spectrometric and optical methods ; Spectrometry, Fluorescence - methods ; Uncertainty</subject><ispartof>Analytical chemistry (Washington), 2010-07, Vol.82 (14), p.6132-6138</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 15, 2010</rights><rights>Copyright © 2010 American Chemical Society 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-8219fe1289bd68dda20baf7f8a3569eef734c99b6009059d41437cff1fb28f923</citedby><cites>FETCH-LOGICAL-a461t-8219fe1289bd68dda20baf7f8a3569eef734c99b6009059d41437cff1fb28f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac1008749$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac1008749$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23040454$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20583766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Xinghua</creatorcontrib><creatorcontrib>Lim, John</creatorcontrib><creatorcontrib>Ha, Taekjip</creatorcontrib><title>Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies.</description><subject>Analytical chemistry</subject><subject>Benzopyrans - chemistry</subject><subject>Catalase - metabolism</subject><subject>Chemistry</subject><subject>Enzymes</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gluconates - metabolism</subject><subject>Glucose</subject><subject>Glucose Oxidase - metabolism</subject><subject>Molecules</subject><subject>Naphthols - chemistry</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Photobleaching</subject><subject>Rhodamines - chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Uncertainty</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNplkc1u1DAUhS0EotPCghdAFhKqWASuHSexWSBVpYVKRUUMrCPHuZ5x5cTFTgrzELwzCR1m-FlZ9v18zzk6hDxh8JIBZ6-0YQCyEuoeWbCCQ1ZKye-TBQDkGa8ADshhStcAjAErH5IDDoXMq7JckB8nxrXOOqMHF3oaLB3WSK--b1bY06XRt9ivXL-iy00asKNuepyuHrMPwaMZPdJzP4aIyWBvkC6HsXWYXtOLGRxGusQ-zf-_uWFNNf00y3Q4RGfo21H77KxzKc3KH2No8BF5YLVP-Hh7HpEv52efT99nl1fvLk5PLjMtSjZkkjNlkXGpmraUbas5NNpWVuq8KBWirXJhlGpKAAWFagUTeWWsZbbh0iqeH5E3d3tvxqbDdvI-RO3rm-g6HTd10K7-e9K7db0KtzVXIIp8XnC8XRDD1xHTUE85DHqvewxjqishlWTlL6ln_5DXYYz9lG6CGCtYJfIJenEHmRhSimh3VhjUc8X1ruKJffqn9x35u9MJeL4FdDLa26h749Key0FMIcSe0ybtTf0v-BMpIbt2</recordid><startdate>20100715</startdate><enddate>20100715</enddate><creator>Shi, Xinghua</creator><creator>Lim, John</creator><creator>Ha, Taekjip</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100715</creationdate><title>Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe</title><author>Shi, Xinghua ; Lim, John ; Ha, Taekjip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-8219fe1289bd68dda20baf7f8a3569eef734c99b6009059d41437cff1fb28f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Benzopyrans - chemistry</topic><topic>Catalase - metabolism</topic><topic>Chemistry</topic><topic>Enzymes</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gluconates - metabolism</topic><topic>Glucose</topic><topic>Glucose Oxidase - metabolism</topic><topic>Molecules</topic><topic>Naphthols - chemistry</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Photobleaching</topic><topic>Rhodamines - chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xinghua</creatorcontrib><creatorcontrib>Lim, John</creatorcontrib><creatorcontrib>Ha, Taekjip</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xinghua</au><au>Lim, John</au><au>Ha, Taekjip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2010-07-15</date><risdate>2010</risdate><volume>82</volume><issue>14</issue><spage>6132</spage><epage>6138</epage><pages>6132-6138</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20583766</pmid><doi>10.1021/ac1008749</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2010-07, Vol.82 (14), p.6132-6138
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904532
source MEDLINE; ACS Publications
subjects Analytical chemistry
Benzopyrans - chemistry
Catalase - metabolism
Chemistry
Enzymes
Exact sciences and technology
Fluorescence
Fluorescent Dyes - chemistry
Gluconates - metabolism
Glucose
Glucose Oxidase - metabolism
Molecules
Naphthols - chemistry
Oxygen
Oxygen - chemistry
Photobleaching
Rhodamines - chemistry
Spectrometric and optical methods
Spectrometry, Fluorescence - methods
Uncertainty
title Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidification%20of%20the%20Oxygen%20Scavenging%20System%20in%20Single-Molecule%20Fluorescence%20Studies:%20In%20Situ%20Sensing%20with%20a%20Ratiometric%20Dual-Emission%20Probe&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Shi,%20Xinghua&rft.date=2010-07-15&rft.volume=82&rft.issue=14&rft.spage=6132&rft.epage=6138&rft.pages=6132-6138&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac1008749&rft_dat=%3Cproquest_pubme%3E2105950981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741151743&rft_id=info:pmid/20583766&rfr_iscdi=true