AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish ( Fundulus heteroclitus)
Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummi...
Gespeichert in:
Veröffentlicht in: | Aquatic toxicology 2010-08, Vol.99 (2), p.232-240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 2 |
container_start_page | 232 |
container_title | Aquatic toxicology |
container_volume | 99 |
creator | Clark, Bryan W. Matson, Cole W. Jung, Dawoon Di Giulio, Richard T. |
description | Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (
Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made
Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of
Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in
Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but
Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in
Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in
Fundulus. |
doi_str_mv | 10.1016/j.aquatox.2010.05.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2901414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166445X10001578</els_id><sourcerecordid>762265496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-e0394bbf98ddaa4d2aba0fff1dfb25abc924a40818d97d6c4cf98ffb797a878f3</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIRNPCTwB8QcBhg-3Y3t0LKI0oRaoEAipxs2b9kThs1qm9W5Erv5yJEgqc8MUj-5l3Zvy6KJ4wOmWUqdfrKdyMMMQfU07xjMoppeJeMWF11ZRMMnG_mCCnSiHkt5PiNOc1xcVF87A44VRRqYSaFD_nl5852TgbYHCZGEgYGTK4hNpL17scMomebGO3MzvTBUMgxQ0MGKx2NkXMaGOfCfSWfFqcl4wrEnoyHzro99D30HXBh7wiL8nF2NuxGzNZOSwQUW0Y86tHxQMPXXaPj_tZcX3x7uvisrz6-P7DYn5VGsXqoXR01oi29U1tLYCwHFqg3ntmfcsltKbhAgStWW2byiojDKLet1VTQV3VfnZWvDnobscWBzauHxJ0epvCBtJORwj635s-rPQy3mreUCaYQIEXR4EUb0aXB70J2bgOJ3VxzLpSnCspGoWkPJAmxZyT83dVGNV7-_RaH-3Te_s0lRrtw7ynf7d4l_XbLwSeHwHIBjqfoDch_-FmVEopJHLPDpyHqGGZkLn-gpVmlNVKcFEj8fZAOHzy2-CSzia43uBPSM4M2sbwn2Z_AYQYyLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762265496</pqid></control><display><type>article</type><title>AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish ( Fundulus heteroclitus)</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Clark, Bryan W. ; Matson, Cole W. ; Jung, Dawoon ; Di Giulio, Richard T.</creator><creatorcontrib>Clark, Bryan W. ; Matson, Cole W. ; Jung, Dawoon ; Di Giulio, Richard T.</creatorcontrib><description>Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (
Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made
Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of
Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in
Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but
Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in
Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in
Fundulus.</description><identifier>ISSN: 0166-445X</identifier><identifier>EISSN: 1879-1514</identifier><identifier>DOI: 10.1016/j.aquatox.2010.05.004</identifier><identifier>PMID: 20605646</identifier><identifier>CODEN: AQTODG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptation ; Adaptation, Physiological ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; Aryl hydrocarbon receptor ; Biological and medical sciences ; Ecotoxicology, biological effects of pollution ; Fresh water ecosystems ; Fundamental and applied biological sciences. Psychology ; Fundulidae - genetics ; Fundulidae - metabolism ; Fundulidae - physiology ; Fundulus ; Fundulus heteroclitus ; Gene Knockdown Techniques ; General aspects ; Heart - drug effects ; Marine ; Morpholino ; PCB-126 ; Polychlorinated Biphenyls - toxicity ; Polycyclic aromatic hydrocarbon ; Polycyclic Aromatic Hydrocarbons - toxicity ; Receptors, Aryl Hydrocarbon - genetics ; Receptors, Aryl Hydrocarbon - metabolism ; Synecology</subject><ispartof>Aquatic toxicology, 2010-08, Vol.99 (2), p.232-240</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>2010 Elsevier B.V. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-e0394bbf98ddaa4d2aba0fff1dfb25abc924a40818d97d6c4cf98ffb797a878f3</citedby><cites>FETCH-LOGICAL-c618t-e0394bbf98ddaa4d2aba0fff1dfb25abc924a40818d97d6c4cf98ffb797a878f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aquatox.2010.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23055545$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20605646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clark, Bryan W.</creatorcontrib><creatorcontrib>Matson, Cole W.</creatorcontrib><creatorcontrib>Jung, Dawoon</creatorcontrib><creatorcontrib>Di Giulio, Richard T.</creatorcontrib><title>AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish ( Fundulus heteroclitus)</title><title>Aquatic toxicology</title><addtitle>Aquat Toxicol</addtitle><description>Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (
Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made
Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of
Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in
Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but
Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in
Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in
Fundulus.</description><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>Aryl hydrocarbon receptor</subject><subject>Biological and medical sciences</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Fresh water ecosystems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundulidae - genetics</subject><subject>Fundulidae - metabolism</subject><subject>Fundulidae - physiology</subject><subject>Fundulus</subject><subject>Fundulus heteroclitus</subject><subject>Gene Knockdown Techniques</subject><subject>General aspects</subject><subject>Heart - drug effects</subject><subject>Marine</subject><subject>Morpholino</subject><subject>PCB-126</subject><subject>Polychlorinated Biphenyls - toxicity</subject><subject>Polycyclic aromatic hydrocarbon</subject><subject>Polycyclic Aromatic Hydrocarbons - toxicity</subject><subject>Receptors, Aryl Hydrocarbon - genetics</subject><subject>Receptors, Aryl Hydrocarbon - metabolism</subject><subject>Synecology</subject><issn>0166-445X</issn><issn>1879-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1vEzEQhlcIRNPCTwB8QcBhg-3Y3t0LKI0oRaoEAipxs2b9kThs1qm9W5Erv5yJEgqc8MUj-5l3Zvy6KJ4wOmWUqdfrKdyMMMQfU07xjMoppeJeMWF11ZRMMnG_mCCnSiHkt5PiNOc1xcVF87A44VRRqYSaFD_nl5852TgbYHCZGEgYGTK4hNpL17scMomebGO3MzvTBUMgxQ0MGKx2NkXMaGOfCfSWfFqcl4wrEnoyHzro99D30HXBh7wiL8nF2NuxGzNZOSwQUW0Y86tHxQMPXXaPj_tZcX3x7uvisrz6-P7DYn5VGsXqoXR01oi29U1tLYCwHFqg3ntmfcsltKbhAgStWW2byiojDKLet1VTQV3VfnZWvDnobscWBzauHxJ0epvCBtJORwj635s-rPQy3mreUCaYQIEXR4EUb0aXB70J2bgOJ3VxzLpSnCspGoWkPJAmxZyT83dVGNV7-_RaH-3Te_s0lRrtw7ynf7d4l_XbLwSeHwHIBjqfoDch_-FmVEopJHLPDpyHqGGZkLn-gpVmlNVKcFEj8fZAOHzy2-CSzia43uBPSM4M2sbwn2Z_AYQYyLA</recordid><startdate>20100815</startdate><enddate>20100815</enddate><creator>Clark, Bryan W.</creator><creator>Matson, Cole W.</creator><creator>Jung, Dawoon</creator><creator>Di Giulio, Richard T.</creator><general>Elsevier B.V</general><general>Amsterdam; New York: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20100815</creationdate><title>AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish ( Fundulus heteroclitus)</title><author>Clark, Bryan W. ; Matson, Cole W. ; Jung, Dawoon ; Di Giulio, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-e0394bbf98ddaa4d2aba0fff1dfb25abc924a40818d97d6c4cf98ffb797a878f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>Aryl hydrocarbon receptor</topic><topic>Biological and medical sciences</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Fresh water ecosystems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundulidae - genetics</topic><topic>Fundulidae - metabolism</topic><topic>Fundulidae - physiology</topic><topic>Fundulus</topic><topic>Fundulus heteroclitus</topic><topic>Gene Knockdown Techniques</topic><topic>General aspects</topic><topic>Heart - drug effects</topic><topic>Marine</topic><topic>Morpholino</topic><topic>PCB-126</topic><topic>Polychlorinated Biphenyls - toxicity</topic><topic>Polycyclic aromatic hydrocarbon</topic><topic>Polycyclic Aromatic Hydrocarbons - toxicity</topic><topic>Receptors, Aryl Hydrocarbon - genetics</topic><topic>Receptors, Aryl Hydrocarbon - metabolism</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Bryan W.</creatorcontrib><creatorcontrib>Matson, Cole W.</creatorcontrib><creatorcontrib>Jung, Dawoon</creatorcontrib><creatorcontrib>Di Giulio, Richard T.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aquatic toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Bryan W.</au><au>Matson, Cole W.</au><au>Jung, Dawoon</au><au>Di Giulio, Richard T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish ( Fundulus heteroclitus)</atitle><jtitle>Aquatic toxicology</jtitle><addtitle>Aquat Toxicol</addtitle><date>2010-08-15</date><risdate>2010</risdate><volume>99</volume><issue>2</issue><spage>232</spage><epage>240</epage><pages>232-240</pages><issn>0166-445X</issn><eissn>1879-1514</eissn><coden>AQTODG</coden><abstract>Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (
Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made
Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of
Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in
Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but
Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in
Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in
Fundulus.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20605646</pmid><doi>10.1016/j.aquatox.2010.05.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-445X |
ispartof | Aquatic toxicology, 2010-08, Vol.99 (2), p.232-240 |
issn | 0166-445X 1879-1514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2901414 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adaptation Adaptation, Physiological Animal and plant ecology Animal, plant and microbial ecology Animals Applied ecology Aryl hydrocarbon receptor Biological and medical sciences Ecotoxicology, biological effects of pollution Fresh water ecosystems Fundamental and applied biological sciences. Psychology Fundulidae - genetics Fundulidae - metabolism Fundulidae - physiology Fundulus Fundulus heteroclitus Gene Knockdown Techniques General aspects Heart - drug effects Marine Morpholino PCB-126 Polychlorinated Biphenyls - toxicity Polycyclic aromatic hydrocarbon Polycyclic Aromatic Hydrocarbons - toxicity Receptors, Aryl Hydrocarbon - genetics Receptors, Aryl Hydrocarbon - metabolism Synecology |
title | AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish ( Fundulus heteroclitus) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AHR2%20mediates%20cardiac%20teratogenesis%20of%20polycyclic%20aromatic%20hydrocarbons%20and%20PCB-126%20in%20Atlantic%20killifish%20(%20Fundulus%20heteroclitus)&rft.jtitle=Aquatic%20toxicology&rft.au=Clark,%20Bryan%20W.&rft.date=2010-08-15&rft.volume=99&rft.issue=2&rft.spage=232&rft.epage=240&rft.pages=232-240&rft.issn=0166-445X&rft.eissn=1879-1514&rft.coden=AQTODG&rft_id=info:doi/10.1016/j.aquatox.2010.05.004&rft_dat=%3Cproquest_pubme%3E762265496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762265496&rft_id=info:pmid/20605646&rft_els_id=S0166445X10001578&rfr_iscdi=true |