The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices
Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocati...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2010-09, Vol.31 (25), p.6425-6435 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6435 |
---|---|
container_issue | 25 |
container_start_page | 6425 |
container_title | Biomaterials |
container_volume | 31 |
creator | Miron-Mendoza, Miguel Seemann, Joachim Grinnell, Frederick |
description | Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity. |
doi_str_mv | 10.1016/j.biomaterials.2010.04.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210005806</els_id><sourcerecordid>733652852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokPhLyCLDWwyXDuOk7CohMpTqsSCsrYc53rGQ2IPtjNidvx0HE2pCgtgZVn-zrkPn6J4RmFNgYqXu3Vv_aQSBqvGuGaQH4CvQfB7xYq2TVvWHdT3ixVQzspOUHZWPIpxB_kOnD0szhjUVVM17ar4cb1FMlhjMKBL2Y8E3MyjStY74g3ROI5k8smOSJRO9mDTkaRt8PNmS3IPwX4nMWW9wxiJcgPZ--DjQlm3gLjYT-hiNszu2o-j2qA7aTXGx8UDk6fAJzfnefHl3dvryw_l1af3Hy9fX5VaNCyVw4BGI0MQrVamN4a3vR4agQP0vG91hZRz1nHEumkUA1bVAhvT1TgYbmhbnRcXJ9_93E846DxtUKPcBzupcJReWfn7i7NbufEHyTqAGng2eH5jEPy3GWOSk43LepRDP0fZCMhlO9H9m6wqUbO2Zpl88VeSioZWHYN2Kf_qhOq83hjQ3LZOQS6xkDt5NxZyiYUELnMssvjp3eFvpb9ykIE3JwDzFxwsBhm1RadxsAF1koO3_1fn4g8bPVpntRq_4hHjzs_BLRoqI5MgPy8BXfJJIe-4BVH9BKf56kI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671392084</pqid></control><display><type>article</type><title>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Miron-Mendoza, Miguel ; Seemann, Joachim ; Grinnell, Frederick</creator><creatorcontrib>Miron-Mendoza, Miguel ; Seemann, Joachim ; Grinnell, Frederick</creatorcontrib><description>Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.04.064</identifier><identifier>PMID: 20537378</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Actins - metabolism ; Advanced Basic Science ; Cell migration ; Cell Movement ; Cell spreading ; Cells, Cultured ; Collagen - chemistry ; Collagen translocation ; Collagens ; Dentistry ; Extracellular matrix ; Fibroblasts - cytology ; Focal Adhesion Protein-Tyrosine Kinases - metabolism ; Glutaral - chemistry ; Humans ; Indexing in process ; Mathematical analysis ; Matrices ; Matrix methods ; Mechanoregulation ; Migration ; Phosphorylation ; Porosity ; Spreading ; Stiffness ; Surface chemistry</subject><ispartof>Biomaterials, 2010-09, Vol.31 (25), p.6425-6435</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</citedby><cites>FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.04.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20537378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miron-Mendoza, Miguel</creatorcontrib><creatorcontrib>Seemann, Joachim</creatorcontrib><creatorcontrib>Grinnell, Frederick</creatorcontrib><title>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.</description><subject>Actins - metabolism</subject><subject>Advanced Basic Science</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cell spreading</subject><subject>Cells, Cultured</subject><subject>Collagen - chemistry</subject><subject>Collagen translocation</subject><subject>Collagens</subject><subject>Dentistry</subject><subject>Extracellular matrix</subject><subject>Fibroblasts - cytology</subject><subject>Focal Adhesion Protein-Tyrosine Kinases - metabolism</subject><subject>Glutaral - chemistry</subject><subject>Humans</subject><subject>Indexing in process</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Mechanoregulation</subject><subject>Migration</subject><subject>Phosphorylation</subject><subject>Porosity</subject><subject>Spreading</subject><subject>Stiffness</subject><subject>Surface chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhSMEokPhLyCLDWwyXDuOk7CohMpTqsSCsrYc53rGQ2IPtjNidvx0HE2pCgtgZVn-zrkPn6J4RmFNgYqXu3Vv_aQSBqvGuGaQH4CvQfB7xYq2TVvWHdT3ixVQzspOUHZWPIpxB_kOnD0szhjUVVM17ar4cb1FMlhjMKBL2Y8E3MyjStY74g3ROI5k8smOSJRO9mDTkaRt8PNmS3IPwX4nMWW9wxiJcgPZ--DjQlm3gLjYT-hiNszu2o-j2qA7aTXGx8UDk6fAJzfnefHl3dvryw_l1af3Hy9fX5VaNCyVw4BGI0MQrVamN4a3vR4agQP0vG91hZRz1nHEumkUA1bVAhvT1TgYbmhbnRcXJ9_93E846DxtUKPcBzupcJReWfn7i7NbufEHyTqAGng2eH5jEPy3GWOSk43LepRDP0fZCMhlO9H9m6wqUbO2Zpl88VeSioZWHYN2Kf_qhOq83hjQ3LZOQS6xkDt5NxZyiYUELnMssvjp3eFvpb9ykIE3JwDzFxwsBhm1RadxsAF1koO3_1fn4g8bPVpntRq_4hHjzs_BLRoqI5MgPy8BXfJJIe-4BVH9BKf56kI</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Miron-Mendoza, Miguel</creator><creator>Seemann, Joachim</creator><creator>Grinnell, Frederick</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20100901</creationdate><title>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</title><author>Miron-Mendoza, Miguel ; Seemann, Joachim ; Grinnell, Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actins - metabolism</topic><topic>Advanced Basic Science</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cell spreading</topic><topic>Cells, Cultured</topic><topic>Collagen - chemistry</topic><topic>Collagen translocation</topic><topic>Collagens</topic><topic>Dentistry</topic><topic>Extracellular matrix</topic><topic>Fibroblasts - cytology</topic><topic>Focal Adhesion Protein-Tyrosine Kinases - metabolism</topic><topic>Glutaral - chemistry</topic><topic>Humans</topic><topic>Indexing in process</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Mechanoregulation</topic><topic>Migration</topic><topic>Phosphorylation</topic><topic>Porosity</topic><topic>Spreading</topic><topic>Stiffness</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miron-Mendoza, Miguel</creatorcontrib><creatorcontrib>Seemann, Joachim</creatorcontrib><creatorcontrib>Grinnell, Frederick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miron-Mendoza, Miguel</au><au>Seemann, Joachim</au><au>Grinnell, Frederick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>31</volume><issue>25</issue><spage>6425</spage><epage>6435</epage><pages>6425-6435</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20537378</pmid><doi>10.1016/j.biomaterials.2010.04.064</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2010-09, Vol.31 (25), p.6425-6435 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900504 |
source | MEDLINE; ScienceDirect Freedom Collection (Elsevier) |
subjects | Actins - metabolism Advanced Basic Science Cell migration Cell Movement Cell spreading Cells, Cultured Collagen - chemistry Collagen translocation Collagens Dentistry Extracellular matrix Fibroblasts - cytology Focal Adhesion Protein-Tyrosine Kinases - metabolism Glutaral - chemistry Humans Indexing in process Mathematical analysis Matrices Matrix methods Mechanoregulation Migration Phosphorylation Porosity Spreading Stiffness Surface chemistry |
title | The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20differential%20regulation%20of%20cell%20motile%20activity%20through%20matrix%20stiffness%20and%20porosity%20in%20three%20dimensional%20collagen%20matrices&rft.jtitle=Biomaterials&rft.au=Miron-Mendoza,%20Miguel&rft.date=2010-09-01&rft.volume=31&rft.issue=25&rft.spage=6425&rft.epage=6435&rft.pages=6425-6435&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.04.064&rft_dat=%3Cproquest_pubme%3E733652852%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671392084&rft_id=info:pmid/20537378&rft_els_id=S0142961210005806&rfr_iscdi=true |