The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices

Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-09, Vol.31 (25), p.6425-6435
Hauptverfasser: Miron-Mendoza, Miguel, Seemann, Joachim, Grinnell, Frederick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6435
container_issue 25
container_start_page 6425
container_title Biomaterials
container_volume 31
creator Miron-Mendoza, Miguel
Seemann, Joachim
Grinnell, Frederick
description Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.
doi_str_mv 10.1016/j.biomaterials.2010.04.064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210005806</els_id><sourcerecordid>733652852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokPhLyCLDWwyXDuOk7CohMpTqsSCsrYc53rGQ2IPtjNidvx0HE2pCgtgZVn-zrkPn6J4RmFNgYqXu3Vv_aQSBqvGuGaQH4CvQfB7xYq2TVvWHdT3ixVQzspOUHZWPIpxB_kOnD0szhjUVVM17ar4cb1FMlhjMKBL2Y8E3MyjStY74g3ROI5k8smOSJRO9mDTkaRt8PNmS3IPwX4nMWW9wxiJcgPZ--DjQlm3gLjYT-hiNszu2o-j2qA7aTXGx8UDk6fAJzfnefHl3dvryw_l1af3Hy9fX5VaNCyVw4BGI0MQrVamN4a3vR4agQP0vG91hZRz1nHEumkUA1bVAhvT1TgYbmhbnRcXJ9_93E846DxtUKPcBzupcJReWfn7i7NbufEHyTqAGng2eH5jEPy3GWOSk43LepRDP0fZCMhlO9H9m6wqUbO2Zpl88VeSioZWHYN2Kf_qhOq83hjQ3LZOQS6xkDt5NxZyiYUELnMssvjp3eFvpb9ykIE3JwDzFxwsBhm1RadxsAF1koO3_1fn4g8bPVpntRq_4hHjzs_BLRoqI5MgPy8BXfJJIe-4BVH9BKf56kI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671392084</pqid></control><display><type>article</type><title>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Miron-Mendoza, Miguel ; Seemann, Joachim ; Grinnell, Frederick</creator><creatorcontrib>Miron-Mendoza, Miguel ; Seemann, Joachim ; Grinnell, Frederick</creatorcontrib><description>Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.04.064</identifier><identifier>PMID: 20537378</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Actins - metabolism ; Advanced Basic Science ; Cell migration ; Cell Movement ; Cell spreading ; Cells, Cultured ; Collagen - chemistry ; Collagen translocation ; Collagens ; Dentistry ; Extracellular matrix ; Fibroblasts - cytology ; Focal Adhesion Protein-Tyrosine Kinases - metabolism ; Glutaral - chemistry ; Humans ; Indexing in process ; Mathematical analysis ; Matrices ; Matrix methods ; Mechanoregulation ; Migration ; Phosphorylation ; Porosity ; Spreading ; Stiffness ; Surface chemistry</subject><ispartof>Biomaterials, 2010-09, Vol.31 (25), p.6425-6435</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</citedby><cites>FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.04.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20537378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miron-Mendoza, Miguel</creatorcontrib><creatorcontrib>Seemann, Joachim</creatorcontrib><creatorcontrib>Grinnell, Frederick</creatorcontrib><title>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.</description><subject>Actins - metabolism</subject><subject>Advanced Basic Science</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cell spreading</subject><subject>Cells, Cultured</subject><subject>Collagen - chemistry</subject><subject>Collagen translocation</subject><subject>Collagens</subject><subject>Dentistry</subject><subject>Extracellular matrix</subject><subject>Fibroblasts - cytology</subject><subject>Focal Adhesion Protein-Tyrosine Kinases - metabolism</subject><subject>Glutaral - chemistry</subject><subject>Humans</subject><subject>Indexing in process</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Mechanoregulation</subject><subject>Migration</subject><subject>Phosphorylation</subject><subject>Porosity</subject><subject>Spreading</subject><subject>Stiffness</subject><subject>Surface chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhSMEokPhLyCLDWwyXDuOk7CohMpTqsSCsrYc53rGQ2IPtjNidvx0HE2pCgtgZVn-zrkPn6J4RmFNgYqXu3Vv_aQSBqvGuGaQH4CvQfB7xYq2TVvWHdT3ixVQzspOUHZWPIpxB_kOnD0szhjUVVM17ar4cb1FMlhjMKBL2Y8E3MyjStY74g3ROI5k8smOSJRO9mDTkaRt8PNmS3IPwX4nMWW9wxiJcgPZ--DjQlm3gLjYT-hiNszu2o-j2qA7aTXGx8UDk6fAJzfnefHl3dvryw_l1af3Hy9fX5VaNCyVw4BGI0MQrVamN4a3vR4agQP0vG91hZRz1nHEumkUA1bVAhvT1TgYbmhbnRcXJ9_93E846DxtUKPcBzupcJReWfn7i7NbufEHyTqAGng2eH5jEPy3GWOSk43LepRDP0fZCMhlO9H9m6wqUbO2Zpl88VeSioZWHYN2Kf_qhOq83hjQ3LZOQS6xkDt5NxZyiYUELnMssvjp3eFvpb9ykIE3JwDzFxwsBhm1RadxsAF1koO3_1fn4g8bPVpntRq_4hHjzs_BLRoqI5MgPy8BXfJJIe-4BVH9BKf56kI</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Miron-Mendoza, Miguel</creator><creator>Seemann, Joachim</creator><creator>Grinnell, Frederick</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20100901</creationdate><title>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</title><author>Miron-Mendoza, Miguel ; Seemann, Joachim ; Grinnell, Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-ddefce2e068cafbff48bcd76ed0b4b8c3e144294ee577a202356e7f95edf4f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actins - metabolism</topic><topic>Advanced Basic Science</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cell spreading</topic><topic>Cells, Cultured</topic><topic>Collagen - chemistry</topic><topic>Collagen translocation</topic><topic>Collagens</topic><topic>Dentistry</topic><topic>Extracellular matrix</topic><topic>Fibroblasts - cytology</topic><topic>Focal Adhesion Protein-Tyrosine Kinases - metabolism</topic><topic>Glutaral - chemistry</topic><topic>Humans</topic><topic>Indexing in process</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Mechanoregulation</topic><topic>Migration</topic><topic>Phosphorylation</topic><topic>Porosity</topic><topic>Spreading</topic><topic>Stiffness</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miron-Mendoza, Miguel</creatorcontrib><creatorcontrib>Seemann, Joachim</creatorcontrib><creatorcontrib>Grinnell, Frederick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miron-Mendoza, Miguel</au><au>Seemann, Joachim</au><au>Grinnell, Frederick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>31</volume><issue>25</issue><spage>6425</spage><epage>6435</epage><pages>6425-6435</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1–4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2 . Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20537378</pmid><doi>10.1016/j.biomaterials.2010.04.064</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2010-09, Vol.31 (25), p.6425-6435
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900504
source MEDLINE; ScienceDirect Freedom Collection (Elsevier)
subjects Actins - metabolism
Advanced Basic Science
Cell migration
Cell Movement
Cell spreading
Cells, Cultured
Collagen - chemistry
Collagen translocation
Collagens
Dentistry
Extracellular matrix
Fibroblasts - cytology
Focal Adhesion Protein-Tyrosine Kinases - metabolism
Glutaral - chemistry
Humans
Indexing in process
Mathematical analysis
Matrices
Matrix methods
Mechanoregulation
Migration
Phosphorylation
Porosity
Spreading
Stiffness
Surface chemistry
title The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20differential%20regulation%20of%20cell%20motile%20activity%20through%20matrix%20stiffness%20and%20porosity%20in%20three%20dimensional%20collagen%20matrices&rft.jtitle=Biomaterials&rft.au=Miron-Mendoza,%20Miguel&rft.date=2010-09-01&rft.volume=31&rft.issue=25&rft.spage=6425&rft.epage=6435&rft.pages=6425-6435&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.04.064&rft_dat=%3Cproquest_pubme%3E733652852%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671392084&rft_id=info:pmid/20537378&rft_els_id=S0142961210005806&rfr_iscdi=true