Deletion of the L-type calcium channel CaV1.3 but not CaV1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons

Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hippocampus 2011-02, Vol.21 (2), p.133-141
Hauptverfasser: Gamelli, Amy E., McKinney, Brandon C., White, Jessica A., Murphy, Geoffrey G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 2
container_start_page 133
container_title Hippocampus
container_volume 21
creator Gamelli, Amy E.
McKinney, Brandon C.
White, Jessica A.
Murphy, Geoffrey G.
description Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age‐related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium‐activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage‐gated L‐type calcium channels (L‐VGCCs) contributes to the generation of the AHP. Two L‐VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3; however, it is not known which L‐VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit‐specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L‐VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared with neurons from wild‐type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from CaV1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hipo.20728
format Article
fullrecord <record><control><sourceid>istex_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2891900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_SQ10TDRT_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2418-7f7c81c88e750a83ebca7b357030c978d5835a5b58bd2a70bccd6be1d1e984203</originalsourceid><addsrcrecordid>eNpVkMFu1DAQhi0EoqXlwhP4BbLM2Ou1c0FabWm30qpdYNseLceZJYbEieIEum_fposqcZp_ZvR9h5-xTwgzBBCfq9C1MwFamDfsFCE3GcJCvp2ygixfSDxhH1L6BYCoAN6zE_Ec59LMT9njBdU0hDbyds-HivgmGw4dce9qH8aG-8rFSDVfuXucSV6MA4_tcFwF7ymN9ZB4iNzxMjQhhlRRydNyvZ2OTTsm4qsl8u7QuyaUruaRxr6N6Zy927s60cd_84zdXX7drdbZ5vbqerXcZEHM0WR6r71BbwxpBc5IKrzThVQaJPhcm1IZqZwqlClK4TQU3peLgrBEys1cgDxjX47ebiwaKj3FoXe17frQuP5gWxfs_58YKvuz_WOFyTGHSYBHwd9Q0-EVRLBT-XYq376Ub9fX29uX9MxkRyakgR5fGdf_tgsttbIPN1f2xzeE3cX3nd3KJ22wiCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deletion of the L-type calcium channel CaV1.3 but not CaV1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Gamelli, Amy E. ; McKinney, Brandon C. ; White, Jessica A. ; Murphy, Geoffrey G.</creator><creatorcontrib>Gamelli, Amy E. ; McKinney, Brandon C. ; White, Jessica A. ; Murphy, Geoffrey G.</creatorcontrib><description>Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age‐related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium‐activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage‐gated L‐type calcium channels (L‐VGCCs) contributes to the generation of the AHP. Two L‐VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3; however, it is not known which L‐VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit‐specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L‐VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared with neurons from wild‐type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from CaV1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1050-9631</identifier><identifier>EISSN: 1098-1063</identifier><identifier>DOI: 10.1002/hipo.20728</identifier><identifier>PMID: 20014384</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>afterhyperpolarization ; hippocampus ; mouse ; neuronal excitability ; voltage-gated ion channel</subject><ispartof>Hippocampus, 2011-02, Vol.21 (2), p.133-141</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhipo.20728$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhipo.20728$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Gamelli, Amy E.</creatorcontrib><creatorcontrib>McKinney, Brandon C.</creatorcontrib><creatorcontrib>White, Jessica A.</creatorcontrib><creatorcontrib>Murphy, Geoffrey G.</creatorcontrib><title>Deletion of the L-type calcium channel CaV1.3 but not CaV1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons</title><title>Hippocampus</title><addtitle>Hippocampus</addtitle><description>Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age‐related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium‐activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage‐gated L‐type calcium channels (L‐VGCCs) contributes to the generation of the AHP. Two L‐VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3; however, it is not known which L‐VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit‐specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L‐VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared with neurons from wild‐type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from CaV1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. © 2009 Wiley‐Liss, Inc.</description><subject>afterhyperpolarization</subject><subject>hippocampus</subject><subject>mouse</subject><subject>neuronal excitability</subject><subject>voltage-gated ion channel</subject><issn>1050-9631</issn><issn>1098-1063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVkMFu1DAQhi0EoqXlwhP4BbLM2Ou1c0FabWm30qpdYNseLceZJYbEieIEum_fposqcZp_ZvR9h5-xTwgzBBCfq9C1MwFamDfsFCE3GcJCvp2ygixfSDxhH1L6BYCoAN6zE_Ec59LMT9njBdU0hDbyds-HivgmGw4dce9qH8aG-8rFSDVfuXucSV6MA4_tcFwF7ymN9ZB4iNzxMjQhhlRRydNyvZ2OTTsm4qsl8u7QuyaUruaRxr6N6Zy927s60cd_84zdXX7drdbZ5vbqerXcZEHM0WR6r71BbwxpBc5IKrzThVQaJPhcm1IZqZwqlClK4TQU3peLgrBEys1cgDxjX47ebiwaKj3FoXe17frQuP5gWxfs_58YKvuz_WOFyTGHSYBHwd9Q0-EVRLBT-XYq376Ub9fX29uX9MxkRyakgR5fGdf_tgsttbIPN1f2xzeE3cX3nd3KJ22wiCY</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Gamelli, Amy E.</creator><creator>McKinney, Brandon C.</creator><creator>White, Jessica A.</creator><creator>Murphy, Geoffrey G.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>5PM</scope></search><sort><creationdate>201102</creationdate><title>Deletion of the L-type calcium channel CaV1.3 but not CaV1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons</title><author>Gamelli, Amy E. ; McKinney, Brandon C. ; White, Jessica A. ; Murphy, Geoffrey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2418-7f7c81c88e750a83ebca7b357030c978d5835a5b58bd2a70bccd6be1d1e984203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>afterhyperpolarization</topic><topic>hippocampus</topic><topic>mouse</topic><topic>neuronal excitability</topic><topic>voltage-gated ion channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamelli, Amy E.</creatorcontrib><creatorcontrib>McKinney, Brandon C.</creatorcontrib><creatorcontrib>White, Jessica A.</creatorcontrib><creatorcontrib>Murphy, Geoffrey G.</creatorcontrib><collection>Istex</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hippocampus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamelli, Amy E.</au><au>McKinney, Brandon C.</au><au>White, Jessica A.</au><au>Murphy, Geoffrey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of the L-type calcium channel CaV1.3 but not CaV1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons</atitle><jtitle>Hippocampus</jtitle><addtitle>Hippocampus</addtitle><date>2011-02</date><risdate>2011</risdate><volume>21</volume><issue>2</issue><spage>133</spage><epage>141</epage><pages>133-141</pages><issn>1050-9631</issn><eissn>1098-1063</eissn><abstract>Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age‐related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium‐activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage‐gated L‐type calcium channels (L‐VGCCs) contributes to the generation of the AHP. Two L‐VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3; however, it is not known which L‐VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit‐specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L‐VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared with neurons from wild‐type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from CaV1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20014384</pmid><doi>10.1002/hipo.20728</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-9631
ispartof Hippocampus, 2011-02, Vol.21 (2), p.133-141
issn 1050-9631
1098-1063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2891900
source Wiley Online Library - AutoHoldings Journals
subjects afterhyperpolarization
hippocampus
mouse
neuronal excitability
voltage-gated ion channel
title Deletion of the L-type calcium channel CaV1.3 but not CaV1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20the%20L-type%20calcium%20channel%20CaV1.3%20but%20not%20CaV1.2%20results%20in%20a%20diminished%20sAHP%20in%20mouse%20CA1%20pyramidal%20neurons&rft.jtitle=Hippocampus&rft.au=Gamelli,%20Amy%20E.&rft.date=2011-02&rft.volume=21&rft.issue=2&rft.spage=133&rft.epage=141&rft.pages=133-141&rft.issn=1050-9631&rft.eissn=1098-1063&rft_id=info:doi/10.1002/hipo.20728&rft_dat=%3Cistex_pubme%3Eark_67375_WNG_SQ10TDRT_P%3C/istex_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20014384&rfr_iscdi=true