Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy

Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest disturbed glucose homeostasis. We examined the efficacy of liver G6Pase-α delivery mediated by AAV-GPE, an adeno-associated virus (AAV) serotype 8 vector expressing human G6Pase-α dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2010-06, Vol.18 (6), p.1076-1084
Hauptverfasser: Yiu, Wai Han, Lee, Young Mok, Peng, Wen-Tao, Pan, Chi-Jiunn, Mead, Paul A, Mansfield, Brian C, Chou, Janice Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1084
container_issue 6
container_start_page 1076
container_title Molecular therapy
container_volume 18
creator Yiu, Wai Han
Lee, Young Mok
Peng, Wen-Tao
Pan, Chi-Jiunn
Mead, Paul A
Mansfield, Brian C
Chou, Janice Y
description Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest disturbed glucose homeostasis. We examined the efficacy of liver G6Pase-α delivery mediated by AAV-GPE, an adeno-associated virus (AAV) serotype 8 vector expressing human G6Pase-α directed by the human G6PC promoter/enhancer (GPE), and compared it to AAV-CBA, that directed murine G6Pase-α expression using a hybrid chicken β-actin (CBA) promoter/cytomegalovirus (CMV) enhancer. The AAV-GPE directed hepatic G6Pase-α expression in the infused G6pc−/− mice declined 12-fold from age 2 to 6 weeks but stabilized at wild-type levels from age 6 to 24 weeks. In contrast, the expression directed by AAV-CBA declined 95-fold over 24 weeks, demonstrating that the GPE is more effective in directing persistent in vivo hepatic transgene expression. We further show that the rapid decline in transgene expression directed by AAV-CBA results from an inflammatory immune response elicited by the AAV-CBA vector. The AAV-GPE-treated G6pc−/− mice exhibit normal levels of blood glucose, blood metabolites, hepatic glycogen, and hepatic fat. Moreover, the mice maintained normal blood glucose levels even after 6 hours of fasting. The complete normalization of hepatic G6Pase-α deficiency by the G6PC promoter/enhancer holds promise for the future of gene therapy in human GSD-Ia patients.
doi_str_mv 10.1038/mt.2010.64
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616310462</els_id><sourcerecordid>4072970591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ced1f78a796a2d09ce694af4349be0e3aa42be5e7a7980941e7e38501f34bda43</originalsourceid><addsrcrecordid>eNptkV1rFDEYhYMotrbe-AMk4IUgbM3XfORGkK1uC9UWur0O2cw725SZZJpkCuOvN9Ot6wde5YQ8OTl5D0JvKDmhhNcf-3TCSN6U4hk6pAUrFoQw8XyvaXmAXsV4lxUtZPkSHbB8TTJJDpFf-n7oIAH-7kOvO_tDJ-sd9i0-gyFrg1fl1RKfQmuNBWcmbB3-NgbrAK-6yfgtOHydfNBbwKc2go6A19MA-Fzjm2jdFq8gs-tbCHqYjtGLVncRXj-tR-jm65f18mxxcbk6X36-WBhR8bQw0NC2qnUlS80aIg2UUuhWcCE3QIBrLdgGCqgyURMpKFTA64LQlotNowU_Qp92vsO46aEx4FLQnRqC7XWYlNdW_X3i7K3a-gfF6lpWnGSD908Gwd-PEJPqbTTQddqBH6OqOKd5jLLO5Lt_yDs_Bpd_p2glWUkqLuZAH3aUCT7GAO0-CyVqrlH1Sc01qnKG3_6Zfo_-6u034HQaA-yBPs0Wjw5iB0Ae8oOFoOJjfdDYACapxtv_PfwTU1u04A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792607344</pqid></control><display><type>article</type><title>Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yiu, Wai Han ; Lee, Young Mok ; Peng, Wen-Tao ; Pan, Chi-Jiunn ; Mead, Paul A ; Mansfield, Brian C ; Chou, Janice Y</creator><creatorcontrib>Yiu, Wai Han ; Lee, Young Mok ; Peng, Wen-Tao ; Pan, Chi-Jiunn ; Mead, Paul A ; Mansfield, Brian C ; Chou, Janice Y</creatorcontrib><description>Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest disturbed glucose homeostasis. We examined the efficacy of liver G6Pase-α delivery mediated by AAV-GPE, an adeno-associated virus (AAV) serotype 8 vector expressing human G6Pase-α directed by the human G6PC promoter/enhancer (GPE), and compared it to AAV-CBA, that directed murine G6Pase-α expression using a hybrid chicken β-actin (CBA) promoter/cytomegalovirus (CMV) enhancer. The AAV-GPE directed hepatic G6Pase-α expression in the infused G6pc−/− mice declined 12-fold from age 2 to 6 weeks but stabilized at wild-type levels from age 6 to 24 weeks. In contrast, the expression directed by AAV-CBA declined 95-fold over 24 weeks, demonstrating that the GPE is more effective in directing persistent in vivo hepatic transgene expression. We further show that the rapid decline in transgene expression directed by AAV-CBA results from an inflammatory immune response elicited by the AAV-CBA vector. The AAV-GPE-treated G6pc−/− mice exhibit normal levels of blood glucose, blood metabolites, hepatic glycogen, and hepatic fat. Moreover, the mice maintained normal blood glucose levels even after 6 hours of fasting. The complete normalization of hepatic G6Pase-α deficiency by the G6PC promoter/enhancer holds promise for the future of gene therapy in human GSD-Ia patients.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2010.64</identifier><identifier>PMID: 20389290</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age ; Animals ; Binding sites ; Childrens health ; Cytomegalovirus ; Dependovirus - genetics ; Endocrinology ; Gene therapy ; Genetic Therapy ; Genetic Vectors ; Glucose ; Glucosephosphate Dehydrogenase - genetics ; Glycogen Storage Disease Type I - therapy ; Homeostasis ; Hypoglycemia ; Liver ; Liver - enzymology ; Liver - metabolism ; Metabolism ; Metabolites ; Mice ; Mice, Knockout ; Original ; Phosphatase</subject><ispartof>Molecular therapy, 2010-06, Vol.18 (6), p.1076-1084</ispartof><rights>2010 The American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group Jun 2010</rights><rights>Copyright 2010, The American Society of Gene &amp; Cell Therapy 2010 The American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-ced1f78a796a2d09ce694af4349be0e3aa42be5e7a7980941e7e38501f34bda43</citedby><cites>FETCH-LOGICAL-c473t-ced1f78a796a2d09ce694af4349be0e3aa42be5e7a7980941e7e38501f34bda43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889730/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1792607344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20389290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yiu, Wai Han</creatorcontrib><creatorcontrib>Lee, Young Mok</creatorcontrib><creatorcontrib>Peng, Wen-Tao</creatorcontrib><creatorcontrib>Pan, Chi-Jiunn</creatorcontrib><creatorcontrib>Mead, Paul A</creatorcontrib><creatorcontrib>Mansfield, Brian C</creatorcontrib><creatorcontrib>Chou, Janice Y</creatorcontrib><title>Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest disturbed glucose homeostasis. We examined the efficacy of liver G6Pase-α delivery mediated by AAV-GPE, an adeno-associated virus (AAV) serotype 8 vector expressing human G6Pase-α directed by the human G6PC promoter/enhancer (GPE), and compared it to AAV-CBA, that directed murine G6Pase-α expression using a hybrid chicken β-actin (CBA) promoter/cytomegalovirus (CMV) enhancer. The AAV-GPE directed hepatic G6Pase-α expression in the infused G6pc−/− mice declined 12-fold from age 2 to 6 weeks but stabilized at wild-type levels from age 6 to 24 weeks. In contrast, the expression directed by AAV-CBA declined 95-fold over 24 weeks, demonstrating that the GPE is more effective in directing persistent in vivo hepatic transgene expression. We further show that the rapid decline in transgene expression directed by AAV-CBA results from an inflammatory immune response elicited by the AAV-CBA vector. The AAV-GPE-treated G6pc−/− mice exhibit normal levels of blood glucose, blood metabolites, hepatic glycogen, and hepatic fat. Moreover, the mice maintained normal blood glucose levels even after 6 hours of fasting. The complete normalization of hepatic G6Pase-α deficiency by the G6PC promoter/enhancer holds promise for the future of gene therapy in human GSD-Ia patients.</description><subject>Age</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Childrens health</subject><subject>Cytomegalovirus</subject><subject>Dependovirus - genetics</subject><subject>Endocrinology</subject><subject>Gene therapy</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Glucose</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Glycogen Storage Disease Type I - therapy</subject><subject>Homeostasis</subject><subject>Hypoglycemia</subject><subject>Liver</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Original</subject><subject>Phosphatase</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkV1rFDEYhYMotrbe-AMk4IUgbM3XfORGkK1uC9UWur0O2cw725SZZJpkCuOvN9Ot6wde5YQ8OTl5D0JvKDmhhNcf-3TCSN6U4hk6pAUrFoQw8XyvaXmAXsV4lxUtZPkSHbB8TTJJDpFf-n7oIAH-7kOvO_tDJ-sd9i0-gyFrg1fl1RKfQmuNBWcmbB3-NgbrAK-6yfgtOHydfNBbwKc2go6A19MA-Fzjm2jdFq8gs-tbCHqYjtGLVncRXj-tR-jm65f18mxxcbk6X36-WBhR8bQw0NC2qnUlS80aIg2UUuhWcCE3QIBrLdgGCqgyURMpKFTA64LQlotNowU_Qp92vsO46aEx4FLQnRqC7XWYlNdW_X3i7K3a-gfF6lpWnGSD908Gwd-PEJPqbTTQddqBH6OqOKd5jLLO5Lt_yDs_Bpd_p2glWUkqLuZAH3aUCT7GAO0-CyVqrlH1Sc01qnKG3_6Zfo_-6u034HQaA-yBPs0Wjw5iB0Ae8oOFoOJjfdDYACapxtv_PfwTU1u04A</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Yiu, Wai Han</creator><creator>Lee, Young Mok</creator><creator>Peng, Wen-Tao</creator><creator>Pan, Chi-Jiunn</creator><creator>Mead, Paul A</creator><creator>Mansfield, Brian C</creator><creator>Chou, Janice Y</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100601</creationdate><title>Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy</title><author>Yiu, Wai Han ; Lee, Young Mok ; Peng, Wen-Tao ; Pan, Chi-Jiunn ; Mead, Paul A ; Mansfield, Brian C ; Chou, Janice Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ced1f78a796a2d09ce694af4349be0e3aa42be5e7a7980941e7e38501f34bda43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Childrens health</topic><topic>Cytomegalovirus</topic><topic>Dependovirus - genetics</topic><topic>Endocrinology</topic><topic>Gene therapy</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Glucose</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Glycogen Storage Disease Type I - therapy</topic><topic>Homeostasis</topic><topic>Hypoglycemia</topic><topic>Liver</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Original</topic><topic>Phosphatase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiu, Wai Han</creatorcontrib><creatorcontrib>Lee, Young Mok</creatorcontrib><creatorcontrib>Peng, Wen-Tao</creatorcontrib><creatorcontrib>Pan, Chi-Jiunn</creatorcontrib><creatorcontrib>Mead, Paul A</creatorcontrib><creatorcontrib>Mansfield, Brian C</creatorcontrib><creatorcontrib>Chou, Janice Y</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiu, Wai Han</au><au>Lee, Young Mok</au><au>Peng, Wen-Tao</au><au>Pan, Chi-Jiunn</au><au>Mead, Paul A</au><au>Mansfield, Brian C</au><au>Chou, Janice Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>18</volume><issue>6</issue><spage>1076</spage><epage>1084</epage><pages>1076-1084</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest disturbed glucose homeostasis. We examined the efficacy of liver G6Pase-α delivery mediated by AAV-GPE, an adeno-associated virus (AAV) serotype 8 vector expressing human G6Pase-α directed by the human G6PC promoter/enhancer (GPE), and compared it to AAV-CBA, that directed murine G6Pase-α expression using a hybrid chicken β-actin (CBA) promoter/cytomegalovirus (CMV) enhancer. The AAV-GPE directed hepatic G6Pase-α expression in the infused G6pc−/− mice declined 12-fold from age 2 to 6 weeks but stabilized at wild-type levels from age 6 to 24 weeks. In contrast, the expression directed by AAV-CBA declined 95-fold over 24 weeks, demonstrating that the GPE is more effective in directing persistent in vivo hepatic transgene expression. We further show that the rapid decline in transgene expression directed by AAV-CBA results from an inflammatory immune response elicited by the AAV-CBA vector. The AAV-GPE-treated G6pc−/− mice exhibit normal levels of blood glucose, blood metabolites, hepatic glycogen, and hepatic fat. Moreover, the mice maintained normal blood glucose levels even after 6 hours of fasting. The complete normalization of hepatic G6Pase-α deficiency by the G6PC promoter/enhancer holds promise for the future of gene therapy in human GSD-Ia patients.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20389290</pmid><doi>10.1038/mt.2010.64</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2010-06, Vol.18 (6), p.1076-1084
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889730
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; PubMed Central; Alma/SFX Local Collection
subjects Age
Animals
Binding sites
Childrens health
Cytomegalovirus
Dependovirus - genetics
Endocrinology
Gene therapy
Genetic Therapy
Genetic Vectors
Glucose
Glucosephosphate Dehydrogenase - genetics
Glycogen Storage Disease Type I - therapy
Homeostasis
Hypoglycemia
Liver
Liver - enzymology
Liver - metabolism
Metabolism
Metabolites
Mice
Mice, Knockout
Original
Phosphatase
title Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Normalization%20of%20Hepatic%20G6PC%20Deficiency%20in%20Murine%20Glycogen%20Storage%20Disease%20Type%20Ia%20Using%20Gene%20Therapy&rft.jtitle=Molecular%20therapy&rft.au=Yiu,%20Wai%20Han&rft.date=2010-06-01&rft.volume=18&rft.issue=6&rft.spage=1076&rft.epage=1084&rft.pages=1076-1084&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2010.64&rft_dat=%3Cproquest_pubme%3E4072970591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792607344&rft_id=info:pmid/20389290&rft_els_id=S1525001616310462&rfr_iscdi=true