Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1

KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K(+) channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2010-06, Vol.135 (6), p.607-618
Hauptverfasser: Lvov, Anatoli, Gage, Steven D, Berrios, Virla M, Kobertz, William R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 6
container_start_page 607
container_title The Journal of general physiology
container_volume 135
creator Lvov, Anatoli
Gage, Steven D
Berrios, Virla M
Kobertz, William R
description KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K(+) channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein-protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4-S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1-KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K(+) channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1-KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1-KCNE1 cytoplasmic region where these protein-protein interactions are poised to slow activation gate opening.
doi_str_mv 10.1085/jgp.200910386
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051466391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b3bd9ee648889c5dbd74d798d4239d65687347d5c639149d84e5b9251dc7f44f3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoiFw5IosLpy2-HNtX5BQVGhFBUKCs-W1ZxNHiR28Tqv-9zgkjYC5zGF-8-aNHkKvKbmkRMv36-XukhFiKOG6f4JmVArSKSX0UzQjhLGOMiMv0ItpWpNWkpHn6IIRodqGmaHVTYBU4xi9qzEnnEfs8K7kCjF1p45jqlCc_wMMUO8BEv6y-HpFsUsB1xXgw_DuqLB0FfDW-VVMUB4Ogg39Tl-iZ6PbTPDq1Ofo56erH4vr7vbb55vFx9vON0u1G_gQDEAvtNbGyzAEJYIyOgjGTehlrxUXKkjfc0OFCVqAHAyTNHg1CjHyOfpw1N3thy0E374rbmN3JW5debDZRfvvJMWVXeY7y9pFIlUTeHcSKPnXHqZqt3HysNm4BHk_WcU5pUYb3si3_5HrvC-pfWd5L7lRpFFz1B0hX_I0FRjPViixhwRtS9CeE2z8m7_9n-nHyPhvPASXUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365397089</pqid></control><display><type>article</type><title>Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lvov, Anatoli ; Gage, Steven D ; Berrios, Virla M ; Kobertz, William R</creator><creatorcontrib>Lvov, Anatoli ; Gage, Steven D ; Berrios, Virla M ; Kobertz, William R</creatorcontrib><description>KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K(+) channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein-protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4-S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1-KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K(+) channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1-KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1-KCNE1 cytoplasmic region where these protein-protein interactions are poised to slow activation gate opening.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.200910386</identifier><identifier>PMID: 20479109</identifier><identifier>CODEN: JGPLAD</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Cysteine ; Cytoplasm ; Disulfides - metabolism ; Humans ; Ion Channel Gating ; KCNQ1 Potassium Channel - genetics ; KCNQ1 Potassium Channel - metabolism ; Membrane Potentials ; Membranes ; Models, Molecular ; Mutation ; Peptides ; Physiology ; Potassium ; Potassium - metabolism ; Potassium Channels, Voltage-Gated - genetics ; Potassium Channels, Voltage-Gated - metabolism ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Interaction Mapping ; Proteins ; Time Factors ; Transfection</subject><ispartof>The Journal of general physiology, 2010-06, Vol.135 (6), p.607-618</ispartof><rights>Copyright Rockefeller University Press Jun 2010</rights><rights>2010 Lvov et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-b3bd9ee648889c5dbd74d798d4239d65687347d5c639149d84e5b9251dc7f44f3</citedby><cites>FETCH-LOGICAL-c479t-b3bd9ee648889c5dbd74d798d4239d65687347d5c639149d84e5b9251dc7f44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20479109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lvov, Anatoli</creatorcontrib><creatorcontrib>Gage, Steven D</creatorcontrib><creatorcontrib>Berrios, Virla M</creatorcontrib><creatorcontrib>Kobertz, William R</creatorcontrib><title>Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K(+) channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein-protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4-S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1-KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K(+) channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1-KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1-KCNE1 cytoplasmic region where these protein-protein interactions are poised to slow activation gate opening.</description><subject>Animals</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cysteine</subject><subject>Cytoplasm</subject><subject>Disulfides - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Membrane Potentials</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Potassium</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Interaction Mapping</subject><subject>Proteins</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoiFw5IosLpy2-HNtX5BQVGhFBUKCs-W1ZxNHiR28Tqv-9zgkjYC5zGF-8-aNHkKvKbmkRMv36-XukhFiKOG6f4JmVArSKSX0UzQjhLGOMiMv0ItpWpNWkpHn6IIRodqGmaHVTYBU4xi9qzEnnEfs8K7kCjF1p45jqlCc_wMMUO8BEv6y-HpFsUsB1xXgw_DuqLB0FfDW-VVMUB4Ogg39Tl-iZ6PbTPDq1Ofo56erH4vr7vbb55vFx9vON0u1G_gQDEAvtNbGyzAEJYIyOgjGTehlrxUXKkjfc0OFCVqAHAyTNHg1CjHyOfpw1N3thy0E374rbmN3JW5debDZRfvvJMWVXeY7y9pFIlUTeHcSKPnXHqZqt3HysNm4BHk_WcU5pUYb3si3_5HrvC-pfWd5L7lRpFFz1B0hX_I0FRjPViixhwRtS9CeE2z8m7_9n-nHyPhvPASXUg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Lvov, Anatoli</creator><creator>Gage, Steven D</creator><creator>Berrios, Virla M</creator><creator>Kobertz, William R</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100601</creationdate><title>Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1</title><author>Lvov, Anatoli ; Gage, Steven D ; Berrios, Virla M ; Kobertz, William R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b3bd9ee648889c5dbd74d798d4239d65687347d5c639149d84e5b9251dc7f44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cysteine</topic><topic>Cytoplasm</topic><topic>Disulfides - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Membrane Potentials</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Potassium</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Interaction Mapping</topic><topic>Proteins</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lvov, Anatoli</creatorcontrib><creatorcontrib>Gage, Steven D</creatorcontrib><creatorcontrib>Berrios, Virla M</creatorcontrib><creatorcontrib>Kobertz, William R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lvov, Anatoli</au><au>Gage, Steven D</au><au>Berrios, Virla M</au><au>Kobertz, William R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>135</volume><issue>6</issue><spage>607</spage><epage>618</epage><pages>607-618</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><coden>JGPLAD</coden><abstract>KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K(+) channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein-protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4-S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1-KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K(+) channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1-KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1-KCNE1 cytoplasmic region where these protein-protein interactions are poised to slow activation gate opening.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>20479109</pmid><doi>10.1085/jgp.200910386</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2010-06, Vol.135 (6), p.607-618
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888057
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
CHO Cells
Cricetinae
Cricetulus
Cysteine
Cytoplasm
Disulfides - metabolism
Humans
Ion Channel Gating
KCNQ1 Potassium Channel - genetics
KCNQ1 Potassium Channel - metabolism
Membrane Potentials
Membranes
Models, Molecular
Mutation
Peptides
Physiology
Potassium
Potassium - metabolism
Potassium Channels, Voltage-Gated - genetics
Potassium Channels, Voltage-Gated - metabolism
Protein Binding
Protein Conformation
Protein Interaction Domains and Motifs
Protein Interaction Mapping
Proteins
Time Factors
Transfection
title Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20protein-protein%20interaction%20between%20KCNE1%20and%20the%20activation%20gate%20machinery%20of%20KCNQ1&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Lvov,%20Anatoli&rft.date=2010-06-01&rft.volume=135&rft.issue=6&rft.spage=607&rft.epage=618&rft.pages=607-618&rft.issn=0022-1295&rft.eissn=1540-7748&rft.coden=JGPLAD&rft_id=info:doi/10.1085/jgp.200910386&rft_dat=%3Cproquest_pubme%3E2051466391%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=365397089&rft_id=info:pmid/20479109&rfr_iscdi=true