Discrete dynamic Bayesian network analysis of fMRI data

We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data‐driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2009-01, Vol.30 (1), p.122-137
Hauptverfasser: Burge, John, Lane, Terran, Link, Hamilton, Qiu, Shibin, Clark, Vincent P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 122
container_title Human brain mapping
container_volume 30
creator Burge, John
Lane, Terran
Link, Hamilton
Qiu, Shibin
Clark, Vincent P.
description We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data‐driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects (Buckner, et al., 2000: J Cogn Neurosci 12:24‐34) and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave‐one‐out cross‐validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine‐learning classifiers: the support vector machine and the Gaussian naïve Bayesian network. We also verify that the dDBN selects correlates based on non‐linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hbm.20490
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66778734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5120-7f3b55abfd1e687834beb277fe14571617ce8d5901fa6f134ccdcfed14e955e93</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALgegFFrwAygakLtL6xHZsb5CYTmkrtYBogaXlOMfUNJfWztDm7ZthhgEWiJUt-TsX6yfkBdB9oLQ4uKra_YJyTR-RbaBa5hQ0e7y8lyLXXMIW2UnpO6UAgsJTsgVSa8oobBM5D8lFHDCrx862wWUzO2IKtss6HO76eJ3ZzjZjCinrfebPP51mtR3sM_LE2ybh8_W5Sz6_O7o8PMnPPhyfHr49y52AgubSs0oIW_kasFRSMV5hVUjpEbiQUIJ0qGqhKXhbemDcudp5rIGjFgI12yVvVn1vFlWLtcNuiLYxNzG0No6mt8H8_dKFK_Ot_2EKpRTlMDV4vW4Q-9sFpsG004-xaWyH_SKZspRSScb_CwvKJAdYwr0VdLFPKaLfbAPULPMwUx7mZx6Tffnn-r_lOoAJvFoDm5xtfLSdC2njCqoFiEJN7mDl7kKD478nmpPZ-a_R-aoipAHvNxU2XptSMinM1_fH5uP88uLLhZqZOXsA3PGwqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20374114</pqid></control><display><type>article</type><title>Discrete dynamic Bayesian network analysis of fMRI data</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Burge, John ; Lane, Terran ; Link, Hamilton ; Qiu, Shibin ; Clark, Vincent P.</creator><creatorcontrib>Burge, John ; Lane, Terran ; Link, Hamilton ; Qiu, Shibin ; Clark, Vincent P.</creatorcontrib><description>We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data‐driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects (Buckner, et al., 2000: J Cogn Neurosci 12:24‐34) and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave‐one‐out cross‐validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine‐learning classifiers: the support vector machine and the Gaussian naïve Bayesian network. We also verify that the dDBN selects correlates based on non‐linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20490</identifier><identifier>PMID: 17990301</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aged ; Algorithms ; Alzheimer Disease - pathology ; Alzheimer Disease - physiopathology ; amygdala ; Bayes Theorem ; Bayesian networks ; Biological and medical sciences ; Brain - anatomy &amp; histology ; Brain - physiology ; Brain Mapping - methods ; Cerebrovascular Circulation - physiology ; Data Interpretation, Statistical ; dementia ; Electrodiagnosis. Electric activity recording ; Fourier Analysis ; functional connectivity ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Medical sciences ; Nerve Net - anatomy &amp; histology ; Nerve Net - physiology ; Nervous system ; Neural Networks (Computer) ; nonlinear analysis ; Normal Distribution ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Signal Processing, Computer-Assisted ; Talairach atlas</subject><ispartof>Human brain mapping, 2009-01, Vol.30 (1), p.122-137</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2009 INIST-CNRS</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5120-7f3b55abfd1e687834beb277fe14571617ce8d5901fa6f134ccdcfed14e955e93</citedby><cites>FETCH-LOGICAL-c5120-7f3b55abfd1e687834beb277fe14571617ce8d5901fa6f134ccdcfed14e955e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888041/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888041/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20951528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17990301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burge, John</creatorcontrib><creatorcontrib>Lane, Terran</creatorcontrib><creatorcontrib>Link, Hamilton</creatorcontrib><creatorcontrib>Qiu, Shibin</creatorcontrib><creatorcontrib>Clark, Vincent P.</creatorcontrib><title>Discrete dynamic Bayesian network analysis of fMRI data</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data‐driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects (Buckner, et al., 2000: J Cogn Neurosci 12:24‐34) and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave‐one‐out cross‐validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine‐learning classifiers: the support vector machine and the Gaussian naïve Bayesian network. We also verify that the dDBN selects correlates based on non‐linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - physiopathology</subject><subject>amygdala</subject><subject>Bayes Theorem</subject><subject>Bayesian networks</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Data Interpretation, Statistical</subject><subject>dementia</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Fourier Analysis</subject><subject>functional connectivity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neural Networks (Computer)</subject><subject>nonlinear analysis</subject><subject>Normal Distribution</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Talairach atlas</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBmALgegFFrwAygakLtL6xHZsb5CYTmkrtYBogaXlOMfUNJfWztDm7ZthhgEWiJUt-TsX6yfkBdB9oLQ4uKra_YJyTR-RbaBa5hQ0e7y8lyLXXMIW2UnpO6UAgsJTsgVSa8oobBM5D8lFHDCrx862wWUzO2IKtss6HO76eJ3ZzjZjCinrfebPP51mtR3sM_LE2ybh8_W5Sz6_O7o8PMnPPhyfHr49y52AgubSs0oIW_kasFRSMV5hVUjpEbiQUIJ0qGqhKXhbemDcudp5rIGjFgI12yVvVn1vFlWLtcNuiLYxNzG0No6mt8H8_dKFK_Ot_2EKpRTlMDV4vW4Q-9sFpsG004-xaWyH_SKZspRSScb_CwvKJAdYwr0VdLFPKaLfbAPULPMwUx7mZx6Tffnn-r_lOoAJvFoDm5xtfLSdC2njCqoFiEJN7mDl7kKD478nmpPZ-a_R-aoipAHvNxU2XptSMinM1_fH5uP88uLLhZqZOXsA3PGwqA</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Burge, John</creator><creator>Lane, Terran</creator><creator>Link, Hamilton</creator><creator>Qiu, Shibin</creator><creator>Clark, Vincent P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200901</creationdate><title>Discrete dynamic Bayesian network analysis of fMRI data</title><author>Burge, John ; Lane, Terran ; Link, Hamilton ; Qiu, Shibin ; Clark, Vincent P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5120-7f3b55abfd1e687834beb277fe14571617ce8d5901fa6f134ccdcfed14e955e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - physiopathology</topic><topic>amygdala</topic><topic>Bayes Theorem</topic><topic>Bayesian networks</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Data Interpretation, Statistical</topic><topic>dementia</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Fourier Analysis</topic><topic>functional connectivity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neural Networks (Computer)</topic><topic>nonlinear analysis</topic><topic>Normal Distribution</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Talairach atlas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burge, John</creatorcontrib><creatorcontrib>Lane, Terran</creatorcontrib><creatorcontrib>Link, Hamilton</creatorcontrib><creatorcontrib>Qiu, Shibin</creatorcontrib><creatorcontrib>Clark, Vincent P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burge, John</au><au>Lane, Terran</au><au>Link, Hamilton</au><au>Qiu, Shibin</au><au>Clark, Vincent P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete dynamic Bayesian network analysis of fMRI data</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2009-01</date><risdate>2009</risdate><volume>30</volume><issue>1</issue><spage>122</spage><epage>137</epage><pages>122-137</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data‐driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects (Buckner, et al., 2000: J Cogn Neurosci 12:24‐34) and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave‐one‐out cross‐validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine‐learning classifiers: the support vector machine and the Gaussian naïve Bayesian network. We also verify that the dDBN selects correlates based on non‐linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17990301</pmid><doi>10.1002/hbm.20490</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2009-01, Vol.30 (1), p.122-137
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888041
source MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aged
Algorithms
Alzheimer Disease - pathology
Alzheimer Disease - physiopathology
amygdala
Bayes Theorem
Bayesian networks
Biological and medical sciences
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Cerebrovascular Circulation - physiology
Data Interpretation, Statistical
dementia
Electrodiagnosis. Electric activity recording
Fourier Analysis
functional connectivity
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Medical sciences
Nerve Net - anatomy & histology
Nerve Net - physiology
Nervous system
Neural Networks (Computer)
nonlinear analysis
Normal Distribution
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Signal Processing, Computer-Assisted
Talairach atlas
title Discrete dynamic Bayesian network analysis of fMRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20dynamic%20Bayesian%20network%20analysis%20of%20fMRI%20data&rft.jtitle=Human%20brain%20mapping&rft.au=Burge,%20John&rft.date=2009-01&rft.volume=30&rft.issue=1&rft.spage=122&rft.epage=137&rft.pages=122-137&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20490&rft_dat=%3Cproquest_pubme%3E66778734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20374114&rft_id=info:pmid/17990301&rfr_iscdi=true