Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise
Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chr...
Gespeichert in:
Veröffentlicht in: | IUBMB life 2008-03, Vol.60 (3), p.145-153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 3 |
container_start_page | 145 |
container_title | IUBMB life |
container_volume | 60 |
creator | Röckl, Katja S.C. Witczak, Carol A. Goodyear, Laurie J. |
description | Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008 |
doi_str_mv | 10.1002/iub.21 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70456429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</originalsourceid><addsrcrecordid>eNp1kU1PGzEQQK2qqEAoPwH5VIlDgu21d709IIWolEiReijcKlmzziQxeL2pvds2_x5XRHwcmItnPE9vLA8hp5xNOGPiwg3NRPAP5IgrwcelUvzjcy6LQ3Kc0j3LUbH6EznkutC5UEfk10-3DuBdWNMW7QaCS22iLtD0gB578LQdkvX4lU7t0CONmLZdSJgohCW1m9gFZyksYdtD73KH9h3FfxitS3hCDlbgE37enyNyd_3tdnYzXvz4Pp9NF2MrS8nHDUNsVmW9qpVeQiNtWelGaKWAC8ullE3NpNWMV9qWzEpe6woKEMB5vq2KYkQun7zboWlxaTH0EbzZRtdC3JkOnHnbCW5j1t0fI7RWVVllwZe9IHa_B0y9aV2y6D0E7IZkKiZVKUX9AtrYpRRx9TyEM_N_ESYvwgiewbPXT3rB9j-fgfMn4K_zuHtHY-Z3V1n2CC-aknY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70456429</pqid></control><display><type>article</type><title>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Röckl, Katja S.C. ; Witczak, Carol A. ; Goodyear, Laurie J.</creator><creatorcontrib>Röckl, Katja S.C. ; Witczak, Carol A. ; Goodyear, Laurie J.</creatorcontrib><description>Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008</description><identifier>ISSN: 1521-6543</identifier><identifier>EISSN: 1521-6551</identifier><identifier>DOI: 10.1002/iub.21</identifier><identifier>PMID: 18380005</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., a Wiley company</publisher><subject>Adaptation, Physiological ; AMP-Activated Protein Kinases ; AMPK ; Calcineurin - metabolism ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Exercise ; Glucose - metabolism ; glucose uptake ; GTPase-Activating Proteins - metabolism ; Heat-Shock Proteins ; Humans ; Multienzyme Complexes - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - physiology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Protein Kinase C - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Signal Transduction - physiology ; skeletal muscle ; training adaptation ; Transcription Factors</subject><ispartof>IUBMB life, 2008-03, Vol.60 (3), p.145-153</ispartof><rights>Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.</rights><rights>2008 IUBMB 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</citedby><cites>FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fiub.21$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fiub.21$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18380005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Röckl, Katja S.C.</creatorcontrib><creatorcontrib>Witczak, Carol A.</creatorcontrib><creatorcontrib>Goodyear, Laurie J.</creatorcontrib><title>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</title><title>IUBMB life</title><addtitle>IUBMB Life</addtitle><description>Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008</description><subject>Adaptation, Physiological</subject><subject>AMP-Activated Protein Kinases</subject><subject>AMPK</subject><subject>Calcineurin - metabolism</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Exercise</subject><subject>Glucose - metabolism</subject><subject>glucose uptake</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Heat-Shock Proteins</subject><subject>Humans</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - physiology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>skeletal muscle</subject><subject>training adaptation</subject><subject>Transcription Factors</subject><issn>1521-6543</issn><issn>1521-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PGzEQQK2qqEAoPwH5VIlDgu21d709IIWolEiReijcKlmzziQxeL2pvds2_x5XRHwcmItnPE9vLA8hp5xNOGPiwg3NRPAP5IgrwcelUvzjcy6LQ3Kc0j3LUbH6EznkutC5UEfk10-3DuBdWNMW7QaCS22iLtD0gB578LQdkvX4lU7t0CONmLZdSJgohCW1m9gFZyksYdtD73KH9h3FfxitS3hCDlbgE37enyNyd_3tdnYzXvz4Pp9NF2MrS8nHDUNsVmW9qpVeQiNtWelGaKWAC8ullE3NpNWMV9qWzEpe6woKEMB5vq2KYkQun7zboWlxaTH0EbzZRtdC3JkOnHnbCW5j1t0fI7RWVVllwZe9IHa_B0y9aV2y6D0E7IZkKiZVKUX9AtrYpRRx9TyEM_N_ESYvwgiewbPXT3rB9j-fgfMn4K_zuHtHY-Z3V1n2CC-aknY</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Röckl, Katja S.C.</creator><creator>Witczak, Carol A.</creator><creator>Goodyear, Laurie J.</creator><general>Wiley Subscription Services, Inc., a Wiley company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200803</creationdate><title>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</title><author>Röckl, Katja S.C. ; Witczak, Carol A. ; Goodyear, Laurie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation, Physiological</topic><topic>AMP-Activated Protein Kinases</topic><topic>AMPK</topic><topic>Calcineurin - metabolism</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Exercise</topic><topic>Glucose - metabolism</topic><topic>glucose uptake</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Heat-Shock Proteins</topic><topic>Humans</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - physiology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>skeletal muscle</topic><topic>training adaptation</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röckl, Katja S.C.</creatorcontrib><creatorcontrib>Witczak, Carol A.</creatorcontrib><creatorcontrib>Goodyear, Laurie J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IUBMB life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röckl, Katja S.C.</au><au>Witczak, Carol A.</au><au>Goodyear, Laurie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</atitle><jtitle>IUBMB life</jtitle><addtitle>IUBMB Life</addtitle><date>2008-03</date><risdate>2008</risdate><volume>60</volume><issue>3</issue><spage>145</spage><epage>153</epage><pages>145-153</pages><issn>1521-6543</issn><eissn>1521-6551</eissn><abstract>Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., a Wiley company</pub><pmid>18380005</pmid><doi>10.1002/iub.21</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-6543 |
ispartof | IUBMB life, 2008-03, Vol.60 (3), p.145-153 |
issn | 1521-6543 1521-6551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885767 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adaptation, Physiological AMP-Activated Protein Kinases AMPK Calcineurin - metabolism Calcium-Calmodulin-Dependent Protein Kinases - metabolism Cyclic AMP-Dependent Protein Kinases - metabolism Exercise Glucose - metabolism glucose uptake GTPase-Activating Proteins - metabolism Heat-Shock Proteins Humans Multienzyme Complexes - metabolism Muscle, Skeletal - cytology Muscle, Skeletal - physiology p38 Mitogen-Activated Protein Kinases - metabolism Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Protein Kinase C - metabolism Protein-Serine-Threonine Kinases - metabolism Signal Transduction - physiology skeletal muscle training adaptation Transcription Factors |
title | Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20mechanisms%20in%20skeletal%20muscle:%20Acute%20responses%20and%20chronic%20adaptations%20to%20exercise&rft.jtitle=IUBMB%20life&rft.au=R%C3%B6ckl,%20Katja%20S.C.&rft.date=2008-03&rft.volume=60&rft.issue=3&rft.spage=145&rft.epage=153&rft.pages=145-153&rft.issn=1521-6543&rft.eissn=1521-6551&rft_id=info:doi/10.1002/iub.21&rft_dat=%3Cproquest_pubme%3E70456429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70456429&rft_id=info:pmid/18380005&rfr_iscdi=true |