Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise

Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUBMB life 2008-03, Vol.60 (3), p.145-153
Hauptverfasser: Röckl, Katja S.C., Witczak, Carol A., Goodyear, Laurie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 3
container_start_page 145
container_title IUBMB life
container_volume 60
creator Röckl, Katja S.C.
Witczak, Carol A.
Goodyear, Laurie J.
description Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008
doi_str_mv 10.1002/iub.21
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70456429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</originalsourceid><addsrcrecordid>eNp1kU1PGzEQQK2qqEAoPwH5VIlDgu21d709IIWolEiReijcKlmzziQxeL2pvds2_x5XRHwcmItnPE9vLA8hp5xNOGPiwg3NRPAP5IgrwcelUvzjcy6LQ3Kc0j3LUbH6EznkutC5UEfk10-3DuBdWNMW7QaCS22iLtD0gB578LQdkvX4lU7t0CONmLZdSJgohCW1m9gFZyksYdtD73KH9h3FfxitS3hCDlbgE37enyNyd_3tdnYzXvz4Pp9NF2MrS8nHDUNsVmW9qpVeQiNtWelGaKWAC8ullE3NpNWMV9qWzEpe6woKEMB5vq2KYkQun7zboWlxaTH0EbzZRtdC3JkOnHnbCW5j1t0fI7RWVVllwZe9IHa_B0y9aV2y6D0E7IZkKiZVKUX9AtrYpRRx9TyEM_N_ESYvwgiewbPXT3rB9j-fgfMn4K_zuHtHY-Z3V1n2CC-aknY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70456429</pqid></control><display><type>article</type><title>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Röckl, Katja S.C. ; Witczak, Carol A. ; Goodyear, Laurie J.</creator><creatorcontrib>Röckl, Katja S.C. ; Witczak, Carol A. ; Goodyear, Laurie J.</creatorcontrib><description>Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008</description><identifier>ISSN: 1521-6543</identifier><identifier>EISSN: 1521-6551</identifier><identifier>DOI: 10.1002/iub.21</identifier><identifier>PMID: 18380005</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., a Wiley company</publisher><subject>Adaptation, Physiological ; AMP-Activated Protein Kinases ; AMPK ; Calcineurin - metabolism ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Exercise ; Glucose - metabolism ; glucose uptake ; GTPase-Activating Proteins - metabolism ; Heat-Shock Proteins ; Humans ; Multienzyme Complexes - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - physiology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Protein Kinase C - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Signal Transduction - physiology ; skeletal muscle ; training adaptation ; Transcription Factors</subject><ispartof>IUBMB life, 2008-03, Vol.60 (3), p.145-153</ispartof><rights>Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.</rights><rights>2008 IUBMB 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</citedby><cites>FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fiub.21$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fiub.21$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18380005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Röckl, Katja S.C.</creatorcontrib><creatorcontrib>Witczak, Carol A.</creatorcontrib><creatorcontrib>Goodyear, Laurie J.</creatorcontrib><title>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</title><title>IUBMB life</title><addtitle>IUBMB Life</addtitle><description>Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008</description><subject>Adaptation, Physiological</subject><subject>AMP-Activated Protein Kinases</subject><subject>AMPK</subject><subject>Calcineurin - metabolism</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Exercise</subject><subject>Glucose - metabolism</subject><subject>glucose uptake</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Heat-Shock Proteins</subject><subject>Humans</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - physiology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>skeletal muscle</subject><subject>training adaptation</subject><subject>Transcription Factors</subject><issn>1521-6543</issn><issn>1521-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PGzEQQK2qqEAoPwH5VIlDgu21d709IIWolEiReijcKlmzziQxeL2pvds2_x5XRHwcmItnPE9vLA8hp5xNOGPiwg3NRPAP5IgrwcelUvzjcy6LQ3Kc0j3LUbH6EznkutC5UEfk10-3DuBdWNMW7QaCS22iLtD0gB578LQdkvX4lU7t0CONmLZdSJgohCW1m9gFZyksYdtD73KH9h3FfxitS3hCDlbgE37enyNyd_3tdnYzXvz4Pp9NF2MrS8nHDUNsVmW9qpVeQiNtWelGaKWAC8ullE3NpNWMV9qWzEpe6woKEMB5vq2KYkQun7zboWlxaTH0EbzZRtdC3JkOnHnbCW5j1t0fI7RWVVllwZe9IHa_B0y9aV2y6D0E7IZkKiZVKUX9AtrYpRRx9TyEM_N_ESYvwgiewbPXT3rB9j-fgfMn4K_zuHtHY-Z3V1n2CC-aknY</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Röckl, Katja S.C.</creator><creator>Witczak, Carol A.</creator><creator>Goodyear, Laurie J.</creator><general>Wiley Subscription Services, Inc., a Wiley company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200803</creationdate><title>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</title><author>Röckl, Katja S.C. ; Witczak, Carol A. ; Goodyear, Laurie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4641-b0eebf69f958dab4c678b2855a12c1444b904c80178c60c41987a3a2a11c80733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation, Physiological</topic><topic>AMP-Activated Protein Kinases</topic><topic>AMPK</topic><topic>Calcineurin - metabolism</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Exercise</topic><topic>Glucose - metabolism</topic><topic>glucose uptake</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Heat-Shock Proteins</topic><topic>Humans</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - physiology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>skeletal muscle</topic><topic>training adaptation</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röckl, Katja S.C.</creatorcontrib><creatorcontrib>Witczak, Carol A.</creatorcontrib><creatorcontrib>Goodyear, Laurie J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IUBMB life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röckl, Katja S.C.</au><au>Witczak, Carol A.</au><au>Goodyear, Laurie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise</atitle><jtitle>IUBMB life</jtitle><addtitle>IUBMB Life</addtitle><date>2008-03</date><risdate>2008</risdate><volume>60</volume><issue>3</issue><spage>145</spage><epage>153</epage><pages>145-153</pages><issn>1521-6543</issn><eissn>1521-6551</eissn><abstract>Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction‐stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise‐mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes. © 2008 IUBMB IUBMB Life, 60(3): 145–153, 2008</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., a Wiley company</pub><pmid>18380005</pmid><doi>10.1002/iub.21</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1521-6543
ispartof IUBMB life, 2008-03, Vol.60 (3), p.145-153
issn 1521-6543
1521-6551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885767
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adaptation, Physiological
AMP-Activated Protein Kinases
AMPK
Calcineurin - metabolism
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Exercise
Glucose - metabolism
glucose uptake
GTPase-Activating Proteins - metabolism
Heat-Shock Proteins
Humans
Multienzyme Complexes - metabolism
Muscle, Skeletal - cytology
Muscle, Skeletal - physiology
p38 Mitogen-Activated Protein Kinases - metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Protein Kinase C - metabolism
Protein-Serine-Threonine Kinases - metabolism
Signal Transduction - physiology
skeletal muscle
training adaptation
Transcription Factors
title Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20mechanisms%20in%20skeletal%20muscle:%20Acute%20responses%20and%20chronic%20adaptations%20to%20exercise&rft.jtitle=IUBMB%20life&rft.au=R%C3%B6ckl,%20Katja%20S.C.&rft.date=2008-03&rft.volume=60&rft.issue=3&rft.spage=145&rft.epage=153&rft.pages=145-153&rft.issn=1521-6543&rft.eissn=1521-6551&rft_id=info:doi/10.1002/iub.21&rft_dat=%3Cproquest_pubme%3E70456429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70456429&rft_id=info:pmid/18380005&rfr_iscdi=true