Improved prediction of protein side-chain conformations with SCWRL4

Determination of side‐chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2009-12, Vol.77 (4), p.778-795
Hauptverfasser: Krivov, Georgii G., Shapovalov, Maxim V., Dunbrack Jr, Roland L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue 4
container_start_page 778
container_title Proteins, structure, function, and bioinformatics
container_volume 77
creator Krivov, Georgii G.
Shapovalov, Maxim V.
Dunbrack Jr, Roland L.
description Determination of side‐chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its speed, accuracy, and ease‐of‐use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved in a new program SCWRL4 through: (1) a new backbone‐dependent rotamer library based on kernel density estimates; (2) averaging over samples of conformations about the positions in the rotamer library; (3) a fast anisotropic hydrogen bonding function; (4) a short‐range, soft van der Waals atom–atom interaction potential; (5) fast collision detection using k‐discrete oriented polytopes; (6) a tree decomposition algorithm to solve the combinatorial problem; and (7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low‐electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of χ1+2 angles are predicted correctly within 40° of the X‐ray positions. Among side chains with higher electron density (25–100th percentile), these numbers rise to 89 and 80%. The new program maintains its simple command‐line interface, designed for homology modeling, and is now available as a dynamic‐linked library for incorporation into other software programs. Proteins 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.22488
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733341477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4578-eb77f6e5d520281ea8a42f7ce549c1b6c2eaac43b3017a0d940011e6caabf4dd3</originalsourceid><addsrcrecordid>eNp9kF1P2zAUhi20iXaMG34Ayt2kSWHHsRM7N5OmagOk0k4MqNQby3FOqEcSFzvl49-T0o7BDVc-kp_3OUcvIQcUjihA8m3pXXeUJFzKHTKkkIsYKOMfyBCkFDFLZTogn0L4CwBZzrJdMqB5BoxLPiSj06aP32EZLT2W1nTWtZGrorUTbRsFW2JsFrofjWsr5xu9RkJ0b7tF9Gc0Ox_zz-RjpeuA-9t3j1z--nkxOonH0-PT0Y9xbHgqZIyFEFWGaZkmkEiKWmqeVMJgynNDi8wkqLXhrGBAhYYy5wCUYma0LipelmyPfN94l6uiwdJg23ldq6W3jfaPymmr3v60dqGu3Z1KpEwpz3rBl63Au9sVhk41Nhisa92iWwUlGGOcciF68uuGNN6F4LF62UJBrUtX64LUc-k9fPj6rv_otuUeoBvg3tb4-I5K_T6fXvyTxpuMDR0-vGS0v1GZYCJVs8mxms8nk6szeqaAPQFsQ54q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733341477</pqid></control><display><type>article</type><title>Improved prediction of protein side-chain conformations with SCWRL4</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Krivov, Georgii G. ; Shapovalov, Maxim V. ; Dunbrack Jr, Roland L.</creator><creatorcontrib>Krivov, Georgii G. ; Shapovalov, Maxim V. ; Dunbrack Jr, Roland L.</creatorcontrib><description>Determination of side‐chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its speed, accuracy, and ease‐of‐use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved in a new program SCWRL4 through: (1) a new backbone‐dependent rotamer library based on kernel density estimates; (2) averaging over samples of conformations about the positions in the rotamer library; (3) a fast anisotropic hydrogen bonding function; (4) a short‐range, soft van der Waals atom–atom interaction potential; (5) fast collision detection using k‐discrete oriented polytopes; (6) a tree decomposition algorithm to solve the combinatorial problem; and (7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low‐electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of χ1+2 angles are predicted correctly within 40° of the X‐ray positions. Among side chains with higher electron density (25–100th percentile), these numbers rise to 89 and 80%. The new program maintains its simple command‐line interface, designed for homology modeling, and is now available as a dynamic‐linked library for incorporation into other software programs. Proteins 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.22488</identifier><identifier>PMID: 19603484</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Computer Simulation ; Crystallography, X-Ray ; graph decomposition ; homology modeling ; Hydrogen Bonding ; Models, Molecular ; Peptide Library ; Protein Conformation ; protein structure ; Proteins - chemistry ; rotamer library ; SCWRL ; Sequence Alignment - statistics &amp; numerical data ; side-chain prediction ; Software ; Software Design ; Static Electricity ; Thermodynamics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2009-12, Vol.77 (4), p.778-795</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4578-eb77f6e5d520281ea8a42f7ce549c1b6c2eaac43b3017a0d940011e6caabf4dd3</citedby><cites>FETCH-LOGICAL-c4578-eb77f6e5d520281ea8a42f7ce549c1b6c2eaac43b3017a0d940011e6caabf4dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.22488$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.22488$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19603484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krivov, Georgii G.</creatorcontrib><creatorcontrib>Shapovalov, Maxim V.</creatorcontrib><creatorcontrib>Dunbrack Jr, Roland L.</creatorcontrib><title>Improved prediction of protein side-chain conformations with SCWRL4</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Determination of side‐chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its speed, accuracy, and ease‐of‐use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved in a new program SCWRL4 through: (1) a new backbone‐dependent rotamer library based on kernel density estimates; (2) averaging over samples of conformations about the positions in the rotamer library; (3) a fast anisotropic hydrogen bonding function; (4) a short‐range, soft van der Waals atom–atom interaction potential; (5) fast collision detection using k‐discrete oriented polytopes; (6) a tree decomposition algorithm to solve the combinatorial problem; and (7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low‐electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of χ1+2 angles are predicted correctly within 40° of the X‐ray positions. Among side chains with higher electron density (25–100th percentile), these numbers rise to 89 and 80%. The new program maintains its simple command‐line interface, designed for homology modeling, and is now available as a dynamic‐linked library for incorporation into other software programs. Proteins 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Crystallography, X-Ray</subject><subject>graph decomposition</subject><subject>homology modeling</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Peptide Library</subject><subject>Protein Conformation</subject><subject>protein structure</subject><subject>Proteins - chemistry</subject><subject>rotamer library</subject><subject>SCWRL</subject><subject>Sequence Alignment - statistics &amp; numerical data</subject><subject>side-chain prediction</subject><subject>Software</subject><subject>Software Design</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1P2zAUhi20iXaMG34Ayt2kSWHHsRM7N5OmagOk0k4MqNQby3FOqEcSFzvl49-T0o7BDVc-kp_3OUcvIQcUjihA8m3pXXeUJFzKHTKkkIsYKOMfyBCkFDFLZTogn0L4CwBZzrJdMqB5BoxLPiSj06aP32EZLT2W1nTWtZGrorUTbRsFW2JsFrofjWsr5xu9RkJ0b7tF9Gc0Ox_zz-RjpeuA-9t3j1z--nkxOonH0-PT0Y9xbHgqZIyFEFWGaZkmkEiKWmqeVMJgynNDi8wkqLXhrGBAhYYy5wCUYma0LipelmyPfN94l6uiwdJg23ldq6W3jfaPymmr3v60dqGu3Z1KpEwpz3rBl63Au9sVhk41Nhisa92iWwUlGGOcciF68uuGNN6F4LF62UJBrUtX64LUc-k9fPj6rv_otuUeoBvg3tb4-I5K_T6fXvyTxpuMDR0-vGS0v1GZYCJVs8mxms8nk6szeqaAPQFsQ54q</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Krivov, Georgii G.</creator><creator>Shapovalov, Maxim V.</creator><creator>Dunbrack Jr, Roland L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200912</creationdate><title>Improved prediction of protein side-chain conformations with SCWRL4</title><author>Krivov, Georgii G. ; Shapovalov, Maxim V. ; Dunbrack Jr, Roland L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4578-eb77f6e5d520281ea8a42f7ce549c1b6c2eaac43b3017a0d940011e6caabf4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Crystallography, X-Ray</topic><topic>graph decomposition</topic><topic>homology modeling</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Peptide Library</topic><topic>Protein Conformation</topic><topic>protein structure</topic><topic>Proteins - chemistry</topic><topic>rotamer library</topic><topic>SCWRL</topic><topic>Sequence Alignment - statistics &amp; numerical data</topic><topic>side-chain prediction</topic><topic>Software</topic><topic>Software Design</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krivov, Georgii G.</creatorcontrib><creatorcontrib>Shapovalov, Maxim V.</creatorcontrib><creatorcontrib>Dunbrack Jr, Roland L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krivov, Georgii G.</au><au>Shapovalov, Maxim V.</au><au>Dunbrack Jr, Roland L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved prediction of protein side-chain conformations with SCWRL4</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2009-12</date><risdate>2009</risdate><volume>77</volume><issue>4</issue><spage>778</spage><epage>795</epage><pages>778-795</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Determination of side‐chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its speed, accuracy, and ease‐of‐use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved in a new program SCWRL4 through: (1) a new backbone‐dependent rotamer library based on kernel density estimates; (2) averaging over samples of conformations about the positions in the rotamer library; (3) a fast anisotropic hydrogen bonding function; (4) a short‐range, soft van der Waals atom–atom interaction potential; (5) fast collision detection using k‐discrete oriented polytopes; (6) a tree decomposition algorithm to solve the combinatorial problem; and (7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low‐electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of χ1+2 angles are predicted correctly within 40° of the X‐ray positions. Among side chains with higher electron density (25–100th percentile), these numbers rise to 89 and 80%. The new program maintains its simple command‐line interface, designed for homology modeling, and is now available as a dynamic‐linked library for incorporation into other software programs. Proteins 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19603484</pmid><doi>10.1002/prot.22488</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2009-12, Vol.77 (4), p.778-795
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885146
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Computer Simulation
Crystallography, X-Ray
graph decomposition
homology modeling
Hydrogen Bonding
Models, Molecular
Peptide Library
Protein Conformation
protein structure
Proteins - chemistry
rotamer library
SCWRL
Sequence Alignment - statistics & numerical data
side-chain prediction
Software
Software Design
Static Electricity
Thermodynamics
title Improved prediction of protein side-chain conformations with SCWRL4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20prediction%20of%20protein%20side-chain%20conformations%20with%20SCWRL4&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Krivov,%20Georgii%20G.&rft.date=2009-12&rft.volume=77&rft.issue=4&rft.spage=778&rft.epage=795&rft.pages=778-795&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.22488&rft_dat=%3Cproquest_pubme%3E733341477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733341477&rft_id=info:pmid/19603484&rfr_iscdi=true