Cardiac sodium channelopathies
Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I Na ) during phase 0 of the cardiac action potential. The importance of I Na for normal cardiac electrical activity is reflected by the high incidence of...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2010-07, Vol.460 (2), p.223-237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Pflügers Archiv |
container_volume | 460 |
creator | Amin, Ahmad S. Asghari-Roodsari, Alaleh Tan, Hanno L. |
description | Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I
Na
) during phase 0 of the cardiac action potential. The importance of I
Na
for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in
SCN5A
, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which I
Na
dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase I
Na
delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce I
Na
decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced I
Na
dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies. |
doi_str_mv | 10.1007/s00424-009-0761-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2883928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753642012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-b2a8c395e477e9db6e7ed72b9a914d90bd5ac69a17e047454b8cb956231131b53</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gJtS3LiK3jwmmWwEKb5AcKPrkGTSdso8atIR_PemTK0PEFdZ3O-c3HsOQqcELgiAvIwAnHIMoDBIQTDsoSHhjGIKhO2jIQAjWEiRD9BRjEsAoDynh2hAk4QAz4doPDWhKI2bxLYou3riFqZpfNWuzHpR-niMDmamiv5k-47Qy-3N8_QePz7dPUyvH7HLANbYUpM7pjLPpfSqsMJLX0hqlVGEFwpskRknlCHSA5c84zZ3VmWCMkIYsRkboaved9XZ2hfON-tgKr0KZW3Cu25NqX9OmnKh5-2bpnnOFM2TwfnWILSvnY9rXZfR-aoyjW-7qGXGBE-x0P9JxqiSMlOJPPtFLtsuNCkHLQXjiom0_QiRHnKhjTH42W5pAnrTku5b0ilyvWlJQ9KMv1-7U3zWkgDaAzGNmrkPXz__7foBimObHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763493611</pqid></control><display><type>article</type><title>Cardiac sodium channelopathies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Amin, Ahmad S. ; Asghari-Roodsari, Alaleh ; Tan, Hanno L.</creator><creatorcontrib>Amin, Ahmad S. ; Asghari-Roodsari, Alaleh ; Tan, Hanno L.</creatorcontrib><description>Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I
Na
) during phase 0 of the cardiac action potential. The importance of I
Na
for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in
SCN5A
, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which I
Na
dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase I
Na
delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce I
Na
decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced I
Na
dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-009-0761-0</identifier><identifier>PMID: 20091048</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animals ; Arrhythmias, Cardiac - genetics ; Arrhythmias, Cardiac - physiopathology ; Biomedical and Life Sciences ; Biomedicine ; Brugada Syndrome - physiopathology ; Cardiomyopathy, Dilated - physiopathology ; Cell Biology ; Channelopathies - genetics ; Channelopathies - physiopathology ; Channels ; Diseases ; Electric potential ; Genes ; Genetics ; Heart - physiology ; Heart - physiopathology ; Human Physiology ; Humans ; Infant ; Ion Channels ; Ion Channels, Receptors and Transporters ; Long QT Syndrome - genetics ; Long QT Syndrome - physiopathology ; Molecular Medicine ; Muscle Proteins - chemistry ; Muscle Proteins - physiology ; Mutations ; Myocardium - metabolism ; Myocytes, Cardiac - physiology ; NAV1.5 Voltage-Gated Sodium Channel ; Neurosciences ; Proteins ; Receptors ; Receptors and Transporters ; Sick Sinus Syndrome - physiopathology ; Sodium ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Sodium Channels - physiology ; Sudden Infant Death - genetics</subject><ispartof>Pflügers Archiv, 2010-07, Vol.460 (2), p.223-237</ispartof><rights>The Author(s) 2009</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-b2a8c395e477e9db6e7ed72b9a914d90bd5ac69a17e047454b8cb956231131b53</citedby><cites>FETCH-LOGICAL-c500t-b2a8c395e477e9db6e7ed72b9a914d90bd5ac69a17e047454b8cb956231131b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-009-0761-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-009-0761-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20091048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amin, Ahmad S.</creatorcontrib><creatorcontrib>Asghari-Roodsari, Alaleh</creatorcontrib><creatorcontrib>Tan, Hanno L.</creatorcontrib><title>Cardiac sodium channelopathies</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I
Na
) during phase 0 of the cardiac action potential. The importance of I
Na
for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in
SCN5A
, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which I
Na
dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase I
Na
delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce I
Na
decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced I
Na
dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies.</description><subject>Animals</subject><subject>Arrhythmias, Cardiac - genetics</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brugada Syndrome - physiopathology</subject><subject>Cardiomyopathy, Dilated - physiopathology</subject><subject>Cell Biology</subject><subject>Channelopathies - genetics</subject><subject>Channelopathies - physiopathology</subject><subject>Channels</subject><subject>Diseases</subject><subject>Electric potential</subject><subject>Genes</subject><subject>Genetics</subject><subject>Heart - physiology</subject><subject>Heart - physiopathology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Infant</subject><subject>Ion Channels</subject><subject>Ion Channels, Receptors and Transporters</subject><subject>Long QT Syndrome - genetics</subject><subject>Long QT Syndrome - physiopathology</subject><subject>Molecular Medicine</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - physiology</subject><subject>Mutations</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>NAV1.5 Voltage-Gated Sodium Channel</subject><subject>Neurosciences</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors and Transporters</subject><subject>Sick Sinus Syndrome - physiopathology</subject><subject>Sodium</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - physiology</subject><subject>Sudden Infant Death - genetics</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gJtS3LiK3jwmmWwEKb5AcKPrkGTSdso8atIR_PemTK0PEFdZ3O-c3HsOQqcELgiAvIwAnHIMoDBIQTDsoSHhjGIKhO2jIQAjWEiRD9BRjEsAoDynh2hAk4QAz4doPDWhKI2bxLYou3riFqZpfNWuzHpR-niMDmamiv5k-47Qy-3N8_QePz7dPUyvH7HLANbYUpM7pjLPpfSqsMJLX0hqlVGEFwpskRknlCHSA5c84zZ3VmWCMkIYsRkboaved9XZ2hfON-tgKr0KZW3Cu25NqX9OmnKh5-2bpnnOFM2TwfnWILSvnY9rXZfR-aoyjW-7qGXGBE-x0P9JxqiSMlOJPPtFLtsuNCkHLQXjiom0_QiRHnKhjTH42W5pAnrTku5b0ilyvWlJQ9KMv1-7U3zWkgDaAzGNmrkPXz__7foBimObHw</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Amin, Ahmad S.</creator><creator>Asghari-Roodsari, Alaleh</creator><creator>Tan, Hanno L.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100701</creationdate><title>Cardiac sodium channelopathies</title><author>Amin, Ahmad S. ; Asghari-Roodsari, Alaleh ; Tan, Hanno L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-b2a8c395e477e9db6e7ed72b9a914d90bd5ac69a17e047454b8cb956231131b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Arrhythmias, Cardiac - genetics</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brugada Syndrome - physiopathology</topic><topic>Cardiomyopathy, Dilated - physiopathology</topic><topic>Cell Biology</topic><topic>Channelopathies - genetics</topic><topic>Channelopathies - physiopathology</topic><topic>Channels</topic><topic>Diseases</topic><topic>Electric potential</topic><topic>Genes</topic><topic>Genetics</topic><topic>Heart - physiology</topic><topic>Heart - physiopathology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Infant</topic><topic>Ion Channels</topic><topic>Ion Channels, Receptors and Transporters</topic><topic>Long QT Syndrome - genetics</topic><topic>Long QT Syndrome - physiopathology</topic><topic>Molecular Medicine</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - physiology</topic><topic>Mutations</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>NAV1.5 Voltage-Gated Sodium Channel</topic><topic>Neurosciences</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors and Transporters</topic><topic>Sick Sinus Syndrome - physiopathology</topic><topic>Sodium</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - physiology</topic><topic>Sudden Infant Death - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Ahmad S.</creatorcontrib><creatorcontrib>Asghari-Roodsari, Alaleh</creatorcontrib><creatorcontrib>Tan, Hanno L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Ahmad S.</au><au>Asghari-Roodsari, Alaleh</au><au>Tan, Hanno L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac sodium channelopathies</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>460</volume><issue>2</issue><spage>223</spage><epage>237</epage><pages>223-237</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I
Na
) during phase 0 of the cardiac action potential. The importance of I
Na
for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in
SCN5A
, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which I
Na
dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase I
Na
delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce I
Na
decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced I
Na
dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>20091048</pmid><doi>10.1007/s00424-009-0761-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2010-07, Vol.460 (2), p.223-237 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2883928 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Arrhythmias, Cardiac - genetics Arrhythmias, Cardiac - physiopathology Biomedical and Life Sciences Biomedicine Brugada Syndrome - physiopathology Cardiomyopathy, Dilated - physiopathology Cell Biology Channelopathies - genetics Channelopathies - physiopathology Channels Diseases Electric potential Genes Genetics Heart - physiology Heart - physiopathology Human Physiology Humans Infant Ion Channels Ion Channels, Receptors and Transporters Long QT Syndrome - genetics Long QT Syndrome - physiopathology Molecular Medicine Muscle Proteins - chemistry Muscle Proteins - physiology Mutations Myocardium - metabolism Myocytes, Cardiac - physiology NAV1.5 Voltage-Gated Sodium Channel Neurosciences Proteins Receptors Receptors and Transporters Sick Sinus Syndrome - physiopathology Sodium Sodium Channels - chemistry Sodium Channels - genetics Sodium Channels - physiology Sudden Infant Death - genetics |
title | Cardiac sodium channelopathies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20sodium%20channelopathies&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Amin,%20Ahmad%20S.&rft.date=2010-07-01&rft.volume=460&rft.issue=2&rft.spage=223&rft.epage=237&rft.pages=223-237&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-009-0761-0&rft_dat=%3Cproquest_pubme%3E753642012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763493611&rft_id=info:pmid/20091048&rfr_iscdi=true |