Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases

Activation of androgen receptor (AR) may have a role in the development of castration-resistant prostate cancer. Two intracellular tyrosine kinases, Ack1 (activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity and promote prostate xenograft tumor growth in castrated animal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2010-06, Vol.29 (22), p.3208-3216
Hauptverfasser: Liu, Y, Karaca, M, Zhang, Z, Gioeli, D, Earp, H S, Whang, Y E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3216
container_issue 22
container_start_page 3208
container_title Oncogene
container_volume 29
creator Liu, Y
Karaca, M
Zhang, Z
Gioeli, D
Earp, H S
Whang, Y E
description Activation of androgen receptor (AR) may have a role in the development of castration-resistant prostate cancer. Two intracellular tyrosine kinases, Ack1 (activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity and promote prostate xenograft tumor growth in castrated animals. However, the upstream signals that activate these kinases and lead to AR activation are incompletely characterized. In this study, we investigated AR phosphorylation in response to non-androgen ligand stimulation using phospho-specific antibodies. Treatment of LNCaP and LAPC-4 cells with epidermal growth factor (EGF), heregulin, Gas6 (ligand binding to the Mer receptor tyrosine kinase and activating Ack1 downstream), interleukin (IL)-6 or bombesin stimulated cell proliferation in the absence of androgen. Treatment of LNCaP and LAPC-4 cells with EGF, heregulin or Gas6 induced AR phosphorylation at Tyr-267, whereas IL-6 or bombesin treatment did not. AR phosphorylation at Tyr-534 was induced by treatment with EGF, IL-6 or bombesin, but not by heregulin or Gas6. Small interfering RNA-mediated knockdown of Ack1 or Src showed that Ack1 mediates heregulin- and Gas6-induced AR Tyr-267 phosphorylation, whereas Src mediates Tyr-534 phosphorylation induced by EGF, IL-6 and bombesin. Dasatinib, a Src inhibitor, blocked EGF-induced Tyr-534 phosphorylation. In addition, we showed that dasatinib also inhibited Ack1 kinase. Dasatinib inhibited heregulin-induced Ack1 kinase activity and AR Tyr-267 phosphorylation. In addition, dasatinib inhibited heregulin-induced AR-dependent reporter activity. Dasatinib also inhibited heregulin-induced expression of endogenous AR target genes. Dasatinib inhibited Ack1-dependent colony formation and prostate xenograft tumor growth in castrated mice. Interestingly, Ack1 or Src knockdown or dasatinib did not inhibit EGF-induced AR Tyr-267 phosphorylation or EGF-stimulated AR activity, suggesting the existence of an additional tyrosine kinase that phosphorylates AR at Tyr-267. These data suggest that specific tyrosine kinases phosphorylate AR at distinct sites and that dasatinib may exert antitumor activity in prostate cancer through inhibition of Ack1.
doi_str_mv 10.1038/onc.2010.103
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2880659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A228509789</galeid><sourcerecordid>A228509789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-e8f6f04fea53d223761551ee012edd386935589c593249f64bc78d6a7554a9f93</originalsourceid><addsrcrecordid>eNqFkl2LEzEUhgdR3Lp657UERbxxar4nuRHK-gkLXqjXIc2ctNmdJjWZCv33ZmjturIiIYST87zvISenaZ4SPCeYqTcpujnFh-heMyO8k60Qmt9vZlgL3GrK6FnzqJQrjHGnMX3YnNEqZFU0a_w7W-wYYliiENdhGcaCShihLVtwwQeHxn1OJURA23Uqdef9UAUpouSRjX1OK4gog4PtmDJa7tHCXZMpg75mh65DtAXK4-aBt0OBJ8fzvPn-4f23i0_t5ZePny8Wl62THRlbUF56zD1YwXpKWSeJEAQAEwp9z5TUTAilndCMcu0lX7pO9dJ2QnCrvWbnzduD73a33EDvII7ZDmabw8bmvUk2mNuZGNZmlX4aqhSWYjJ4dTTI6ccOymg2oTgYBhsh7YrpuMSESCr_TzJGmMJ48nz-F3mVdjnWPhgmOqw4IRP04l8QlZxw3JHqeKJWdgATok_1FW4qbBaUKoF1pyav-R1UXT1sgksRfKj3twSvDwJX_7pk8KeOEWymKTN1ysw0ZVNU8Wd_dvkE_x6rCrw8ArY4O_hsowvlhqNKCy155doDV2oqriDfPPrOwr8A5UnnQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641407173</pqid></control><display><type>article</type><title>Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Y ; Karaca, M ; Zhang, Z ; Gioeli, D ; Earp, H S ; Whang, Y E</creator><creatorcontrib>Liu, Y ; Karaca, M ; Zhang, Z ; Gioeli, D ; Earp, H S ; Whang, Y E</creatorcontrib><description>Activation of androgen receptor (AR) may have a role in the development of castration-resistant prostate cancer. Two intracellular tyrosine kinases, Ack1 (activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity and promote prostate xenograft tumor growth in castrated animals. However, the upstream signals that activate these kinases and lead to AR activation are incompletely characterized. In this study, we investigated AR phosphorylation in response to non-androgen ligand stimulation using phospho-specific antibodies. Treatment of LNCaP and LAPC-4 cells with epidermal growth factor (EGF), heregulin, Gas6 (ligand binding to the Mer receptor tyrosine kinase and activating Ack1 downstream), interleukin (IL)-6 or bombesin stimulated cell proliferation in the absence of androgen. Treatment of LNCaP and LAPC-4 cells with EGF, heregulin or Gas6 induced AR phosphorylation at Tyr-267, whereas IL-6 or bombesin treatment did not. AR phosphorylation at Tyr-534 was induced by treatment with EGF, IL-6 or bombesin, but not by heregulin or Gas6. Small interfering RNA-mediated knockdown of Ack1 or Src showed that Ack1 mediates heregulin- and Gas6-induced AR Tyr-267 phosphorylation, whereas Src mediates Tyr-534 phosphorylation induced by EGF, IL-6 and bombesin. Dasatinib, a Src inhibitor, blocked EGF-induced Tyr-534 phosphorylation. In addition, we showed that dasatinib also inhibited Ack1 kinase. Dasatinib inhibited heregulin-induced Ack1 kinase activity and AR Tyr-267 phosphorylation. In addition, dasatinib inhibited heregulin-induced AR-dependent reporter activity. Dasatinib also inhibited heregulin-induced expression of endogenous AR target genes. Dasatinib inhibited Ack1-dependent colony formation and prostate xenograft tumor growth in castrated mice. Interestingly, Ack1 or Src knockdown or dasatinib did not inhibit EGF-induced AR Tyr-267 phosphorylation or EGF-stimulated AR activity, suggesting the existence of an additional tyrosine kinase that phosphorylates AR at Tyr-267. These data suggest that specific tyrosine kinases phosphorylate AR at distinct sites and that dasatinib may exert antitumor activity in prostate cancer through inhibition of Ack1.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2010.103</identifier><identifier>PMID: 20383201</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/436/2387 ; 692/699/67/589/466 ; Androgen Receptor Antagonists ; Androgen receptors ; Androgens ; Animals ; Antitumor activity ; Apoptosis ; Biological and medical sciences ; Bombesin ; Castration ; Cdc42 protein ; Cell Biology ; Cell Growth Processes - drug effects ; Cell Line, Tumor ; Cell physiology ; Cell proliferation ; Cell receptors ; Cell structures and functions ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cellular biology ; Cercopithecus aethiops ; COS Cells ; Dasatinib ; Dosage and administration ; Drug therapy ; Epidermal growth factor ; Fundamental and applied biological sciences. Psychology ; Genetics ; Heregulin ; Hormone receptors ; Human Genetics ; Humans ; Immunoblotting ; Interleukin 6 ; Internal Medicine ; Kinases ; Ligands ; Male ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Mice ; Miscellaneous ; Molecular and cellular biology ; Nephrology. Urinary tract diseases ; Oncology ; original-article ; Phosphorylation ; Phosphorylation - drug effects ; Physiological aspects ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein Kinase Inhibitors - pharmacology ; Protein kinases ; Protein-tyrosine kinase receptors ; Protein-Tyrosine Kinases - antagonists &amp; inhibitors ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - metabolism ; Pyrimidines - pharmacology ; Receptors, Androgen - genetics ; Receptors, Androgen - metabolism ; Signal Transduction ; siRNA ; src-Family Kinases - antagonists &amp; inhibitors ; src-Family Kinases - genetics ; src-Family Kinases - metabolism ; Thiazoles - pharmacology ; Transfection ; Tumors ; Tumors of the urinary system ; Urinary tract. Prostate gland ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Oncogene, 2010-06, Vol.29 (22), p.3208-3216</ispartof><rights>Macmillan Publishers Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2010.</rights><rights>Copyright Nature Publishing Group Jun 3, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-e8f6f04fea53d223761551ee012edd386935589c593249f64bc78d6a7554a9f93</citedby><cites>FETCH-LOGICAL-c671t-e8f6f04fea53d223761551ee012edd386935589c593249f64bc78d6a7554a9f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2010.103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2010.103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22895964$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20383201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Karaca, M</creatorcontrib><creatorcontrib>Zhang, Z</creatorcontrib><creatorcontrib>Gioeli, D</creatorcontrib><creatorcontrib>Earp, H S</creatorcontrib><creatorcontrib>Whang, Y E</creatorcontrib><title>Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Activation of androgen receptor (AR) may have a role in the development of castration-resistant prostate cancer. Two intracellular tyrosine kinases, Ack1 (activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity and promote prostate xenograft tumor growth in castrated animals. However, the upstream signals that activate these kinases and lead to AR activation are incompletely characterized. In this study, we investigated AR phosphorylation in response to non-androgen ligand stimulation using phospho-specific antibodies. Treatment of LNCaP and LAPC-4 cells with epidermal growth factor (EGF), heregulin, Gas6 (ligand binding to the Mer receptor tyrosine kinase and activating Ack1 downstream), interleukin (IL)-6 or bombesin stimulated cell proliferation in the absence of androgen. Treatment of LNCaP and LAPC-4 cells with EGF, heregulin or Gas6 induced AR phosphorylation at Tyr-267, whereas IL-6 or bombesin treatment did not. AR phosphorylation at Tyr-534 was induced by treatment with EGF, IL-6 or bombesin, but not by heregulin or Gas6. Small interfering RNA-mediated knockdown of Ack1 or Src showed that Ack1 mediates heregulin- and Gas6-induced AR Tyr-267 phosphorylation, whereas Src mediates Tyr-534 phosphorylation induced by EGF, IL-6 and bombesin. Dasatinib, a Src inhibitor, blocked EGF-induced Tyr-534 phosphorylation. In addition, we showed that dasatinib also inhibited Ack1 kinase. Dasatinib inhibited heregulin-induced Ack1 kinase activity and AR Tyr-267 phosphorylation. In addition, dasatinib inhibited heregulin-induced AR-dependent reporter activity. Dasatinib also inhibited heregulin-induced expression of endogenous AR target genes. Dasatinib inhibited Ack1-dependent colony formation and prostate xenograft tumor growth in castrated mice. Interestingly, Ack1 or Src knockdown or dasatinib did not inhibit EGF-induced AR Tyr-267 phosphorylation or EGF-stimulated AR activity, suggesting the existence of an additional tyrosine kinase that phosphorylates AR at Tyr-267. These data suggest that specific tyrosine kinases phosphorylate AR at distinct sites and that dasatinib may exert antitumor activity in prostate cancer through inhibition of Ack1.</description><subject>631/92/436/2387</subject><subject>692/699/67/589/466</subject><subject>Androgen Receptor Antagonists</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Bombesin</subject><subject>Castration</subject><subject>Cdc42 protein</subject><subject>Cell Biology</subject><subject>Cell Growth Processes - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell physiology</subject><subject>Cell proliferation</subject><subject>Cell receptors</subject><subject>Cell structures and functions</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cellular biology</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Dasatinib</subject><subject>Dosage and administration</subject><subject>Drug therapy</subject><subject>Epidermal growth factor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Heregulin</subject><subject>Hormone receptors</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Interleukin 6</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Molecular and cellular biology</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Physiological aspects</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein kinases</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Protein-Tyrosine Kinases - antagonists &amp; inhibitors</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Pyrimidines - pharmacology</subject><subject>Receptors, Androgen - genetics</subject><subject>Receptors, Androgen - metabolism</subject><subject>Signal Transduction</subject><subject>siRNA</subject><subject>src-Family Kinases - antagonists &amp; inhibitors</subject><subject>src-Family Kinases - genetics</subject><subject>src-Family Kinases - metabolism</subject><subject>Thiazoles - pharmacology</subject><subject>Transfection</subject><subject>Tumors</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl2LEzEUhgdR3Lp657UERbxxar4nuRHK-gkLXqjXIc2ctNmdJjWZCv33ZmjturIiIYST87zvISenaZ4SPCeYqTcpujnFh-heMyO8k60Qmt9vZlgL3GrK6FnzqJQrjHGnMX3YnNEqZFU0a_w7W-wYYliiENdhGcaCShihLVtwwQeHxn1OJURA23Uqdef9UAUpouSRjX1OK4gog4PtmDJa7tHCXZMpg75mh65DtAXK4-aBt0OBJ8fzvPn-4f23i0_t5ZePny8Wl62THRlbUF56zD1YwXpKWSeJEAQAEwp9z5TUTAilndCMcu0lX7pO9dJ2QnCrvWbnzduD73a33EDvII7ZDmabw8bmvUk2mNuZGNZmlX4aqhSWYjJ4dTTI6ccOymg2oTgYBhsh7YrpuMSESCr_TzJGmMJ48nz-F3mVdjnWPhgmOqw4IRP04l8QlZxw3JHqeKJWdgATok_1FW4qbBaUKoF1pyav-R1UXT1sgksRfKj3twSvDwJX_7pk8KeOEWymKTN1ysw0ZVNU8Wd_dvkE_x6rCrw8ArY4O_hsowvlhqNKCy155doDV2oqriDfPPrOwr8A5UnnQg</recordid><startdate>20100603</startdate><enddate>20100603</enddate><creator>Liu, Y</creator><creator>Karaca, M</creator><creator>Zhang, Z</creator><creator>Gioeli, D</creator><creator>Earp, H S</creator><creator>Whang, Y E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100603</creationdate><title>Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases</title><author>Liu, Y ; Karaca, M ; Zhang, Z ; Gioeli, D ; Earp, H S ; Whang, Y E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-e8f6f04fea53d223761551ee012edd386935589c593249f64bc78d6a7554a9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/92/436/2387</topic><topic>692/699/67/589/466</topic><topic>Androgen Receptor Antagonists</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Bombesin</topic><topic>Castration</topic><topic>Cdc42 protein</topic><topic>Cell Biology</topic><topic>Cell Growth Processes - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell physiology</topic><topic>Cell proliferation</topic><topic>Cell receptors</topic><topic>Cell structures and functions</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cellular biology</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Dasatinib</topic><topic>Dosage and administration</topic><topic>Drug therapy</topic><topic>Epidermal growth factor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Heregulin</topic><topic>Hormone receptors</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Interleukin 6</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Molecular and cellular biology</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Physiological aspects</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein kinases</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Protein-Tyrosine Kinases - antagonists &amp; inhibitors</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Pyrimidines - pharmacology</topic><topic>Receptors, Androgen - genetics</topic><topic>Receptors, Androgen - metabolism</topic><topic>Signal Transduction</topic><topic>siRNA</topic><topic>src-Family Kinases - antagonists &amp; inhibitors</topic><topic>src-Family Kinases - genetics</topic><topic>src-Family Kinases - metabolism</topic><topic>Thiazoles - pharmacology</topic><topic>Transfection</topic><topic>Tumors</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Karaca, M</creatorcontrib><creatorcontrib>Zhang, Z</creatorcontrib><creatorcontrib>Gioeli, D</creatorcontrib><creatorcontrib>Earp, H S</creatorcontrib><creatorcontrib>Whang, Y E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y</au><au>Karaca, M</au><au>Zhang, Z</au><au>Gioeli, D</au><au>Earp, H S</au><au>Whang, Y E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2010-06-03</date><risdate>2010</risdate><volume>29</volume><issue>22</issue><spage>3208</spage><epage>3216</epage><pages>3208-3216</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Activation of androgen receptor (AR) may have a role in the development of castration-resistant prostate cancer. Two intracellular tyrosine kinases, Ack1 (activated cdc42-associated kinase) and Src, phosphorylate and enhance AR activity and promote prostate xenograft tumor growth in castrated animals. However, the upstream signals that activate these kinases and lead to AR activation are incompletely characterized. In this study, we investigated AR phosphorylation in response to non-androgen ligand stimulation using phospho-specific antibodies. Treatment of LNCaP and LAPC-4 cells with epidermal growth factor (EGF), heregulin, Gas6 (ligand binding to the Mer receptor tyrosine kinase and activating Ack1 downstream), interleukin (IL)-6 or bombesin stimulated cell proliferation in the absence of androgen. Treatment of LNCaP and LAPC-4 cells with EGF, heregulin or Gas6 induced AR phosphorylation at Tyr-267, whereas IL-6 or bombesin treatment did not. AR phosphorylation at Tyr-534 was induced by treatment with EGF, IL-6 or bombesin, but not by heregulin or Gas6. Small interfering RNA-mediated knockdown of Ack1 or Src showed that Ack1 mediates heregulin- and Gas6-induced AR Tyr-267 phosphorylation, whereas Src mediates Tyr-534 phosphorylation induced by EGF, IL-6 and bombesin. Dasatinib, a Src inhibitor, blocked EGF-induced Tyr-534 phosphorylation. In addition, we showed that dasatinib also inhibited Ack1 kinase. Dasatinib inhibited heregulin-induced Ack1 kinase activity and AR Tyr-267 phosphorylation. In addition, dasatinib inhibited heregulin-induced AR-dependent reporter activity. Dasatinib also inhibited heregulin-induced expression of endogenous AR target genes. Dasatinib inhibited Ack1-dependent colony formation and prostate xenograft tumor growth in castrated mice. Interestingly, Ack1 or Src knockdown or dasatinib did not inhibit EGF-induced AR Tyr-267 phosphorylation or EGF-stimulated AR activity, suggesting the existence of an additional tyrosine kinase that phosphorylates AR at Tyr-267. These data suggest that specific tyrosine kinases phosphorylate AR at distinct sites and that dasatinib may exert antitumor activity in prostate cancer through inhibition of Ack1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20383201</pmid><doi>10.1038/onc.2010.103</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2010-06, Vol.29 (22), p.3208-3216
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2880659
source MEDLINE; Springer Nature - Complete Springer Journals; Nature; EZB-FREE-00999 freely available EZB journals
subjects 631/92/436/2387
692/699/67/589/466
Androgen Receptor Antagonists
Androgen receptors
Androgens
Animals
Antitumor activity
Apoptosis
Biological and medical sciences
Bombesin
Castration
Cdc42 protein
Cell Biology
Cell Growth Processes - drug effects
Cell Line, Tumor
Cell physiology
Cell proliferation
Cell receptors
Cell structures and functions
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cellular biology
Cercopithecus aethiops
COS Cells
Dasatinib
Dosage and administration
Drug therapy
Epidermal growth factor
Fundamental and applied biological sciences. Psychology
Genetics
Heregulin
Hormone receptors
Human Genetics
Humans
Immunoblotting
Interleukin 6
Internal Medicine
Kinases
Ligands
Male
Medical sciences
Medicine
Medicine & Public Health
Mice
Miscellaneous
Molecular and cellular biology
Nephrology. Urinary tract diseases
Oncology
original-article
Phosphorylation
Phosphorylation - drug effects
Physiological aspects
Prostate cancer
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Protein Kinase Inhibitors - pharmacology
Protein kinases
Protein-tyrosine kinase receptors
Protein-Tyrosine Kinases - antagonists & inhibitors
Protein-Tyrosine Kinases - genetics
Protein-Tyrosine Kinases - metabolism
Pyrimidines - pharmacology
Receptors, Androgen - genetics
Receptors, Androgen - metabolism
Signal Transduction
siRNA
src-Family Kinases - antagonists & inhibitors
src-Family Kinases - genetics
src-Family Kinases - metabolism
Thiazoles - pharmacology
Transfection
Tumors
Tumors of the urinary system
Urinary tract. Prostate gland
Xenograft Model Antitumor Assays
Xenografts
title Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dasatinib%20inhibits%20site-specific%20tyrosine%20phosphorylation%20of%20androgen%20receptor%20by%20Ack1%20and%20Src%20kinases&rft.jtitle=Oncogene&rft.au=Liu,%20Y&rft.date=2010-06-03&rft.volume=29&rft.issue=22&rft.spage=3208&rft.epage=3216&rft.pages=3208-3216&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2010.103&rft_dat=%3Cgale_pubme%3EA228509789%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641407173&rft_id=info:pmid/20383201&rft_galeid=A228509789&rfr_iscdi=true