Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells

Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2010-06, Vol.120 (6), p.2206-2217
Hauptverfasser: Freitas, Beatriz C G, Gereben, Balázs, Castillo, Melany, Kalló, Imre, Zeöld, Anikó, Egri, Péter, Liposits, Zsolt, Zavacki, Ann Marie, Maciel, Rui M B, Jo, Sungro, Singru, Praful, Sanchez, Edith, Lechan, Ronald M, Bianco, Antonio C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2217
container_issue 6
container_start_page 2206
container_title The Journal of clinical investigation
container_volume 120
creator Freitas, Beatriz C G
Gereben, Balázs
Castillo, Melany
Kalló, Imre
Zeöld, Anikó
Egri, Péter
Liposits, Zsolt
Zavacki, Ann Marie
Maciel, Rui M B
Jo, Sungro
Singru, Praful
Sanchez, Edith
Lechan, Ronald M
Bianco, Antonio C
description Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.
doi_str_mv 10.1172/JCI41977
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A241944800</galeid><sourcerecordid>A241944800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-ac9c32d77ebca25017cb5c2445570ad653cb00f4e7baf38218c31c07808618373</originalsourceid><addsrcrecordid>eNqNk01rGzEQhpfS0rhuob-gLC3047CpvtbSXgrBpK1LIKVfV6HVzu4qrCVH0pr4mH9euU5CXHwIOghePfMyo5nJspcYHWPMycdv8wXDFeePsgkuS1EIQsXjbIIQwUXFqTjKnoVwgRBmrGRPsyOCWCkwFZPs-rvySntjIQ-ms2owtsvrTd4NRg25hmEoGvBmDU0evTGucbHfeGe3AUpHs1YRQm5hTFoK6CDpcLXyEIJxNjc2jz3k3jVgY157lQRlm7wfl8r-sw_PsyetGgK8uLmn2e_Pp7_mX4uz8y-L-clZoWeUxULpSlPScA61VqREmOu61CQVVHKkmllJdY1Qy4DXqqWCYKEp1ogLJGZYUE6n2aed72qsl9DolJBXg1x5s1R-I50ycv_Fml52bi2J4LwqWTJ4d2Pg3eUIIcqlCdsSlAU3BsnLEjNC2QNISjHhFa4S-fo_8sKNPv1kkHTGGUYisdPszQ7q1ADS2Nal_PTWUp6Q1HfGBEKJKg5Q24akYpyF1iR5jz8-wKfTwNLogwEf9gISE-EqdmoMQS5-_ng4e_5nn317j-1BDbEPbhhjGqCwD77fgdq7EDy0d83DSG73QN7uQUJf3W_2HXg7-PQvvbH_1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>367410873</pqid></control><display><type>article</type><title>Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Freitas, Beatriz C G ; Gereben, Balázs ; Castillo, Melany ; Kalló, Imre ; Zeöld, Anikó ; Egri, Péter ; Liposits, Zsolt ; Zavacki, Ann Marie ; Maciel, Rui M B ; Jo, Sungro ; Singru, Praful ; Sanchez, Edith ; Lechan, Ronald M ; Bianco, Antonio C</creator><creatorcontrib>Freitas, Beatriz C G ; Gereben, Balázs ; Castillo, Melany ; Kalló, Imre ; Zeöld, Anikó ; Egri, Péter ; Liposits, Zsolt ; Zavacki, Ann Marie ; Maciel, Rui M B ; Jo, Sungro ; Singru, Praful ; Sanchez, Edith ; Lechan, Ronald M ; Bianco, Antonio C</creatorcontrib><description>Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI41977</identifier><identifier>PMID: 20458138</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Astrocytes - metabolism ; Biomedical research ; Brain ; Brain - metabolism ; Cells - metabolism ; Cellular signal transduction ; Fashion models ; Gene Expression ; Genetic aspects ; Health aspects ; Humans ; Hypothalamus ; Hypothyroidism ; Hypothyroidism - genetics ; Hypothyroidism - metabolism ; Hypoxia ; Inflammation ; Iodide Peroxidase - genetics ; Iodide Peroxidase - metabolism ; Iodide Peroxidase - physiology ; Ischemia ; Male ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neuroglia - metabolism ; Neurons ; Neurons - metabolism ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; Receptors, Thyroid Hormone - genetics ; Receptors, Thyroid Hormone - metabolism ; Rodentia - genetics ; Rodentia - metabolism ; Spasticity ; Thyroid gland ; Thyroid Hormones - genetics ; Thyroid Hormones - metabolism ; Thyroid Hormones - physiology ; Thyroxine - genetics ; Thyroxine - metabolism ; Triiodothyronine ; Triiodothyronine - genetics ; Triiodothyronine - metabolism</subject><ispartof>The Journal of clinical investigation, 2010-06, Vol.120 (6), p.2206-2217</ispartof><rights>COPYRIGHT 2010 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jun 2010</rights><rights>Copyright © 2010, American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-ac9c32d77ebca25017cb5c2445570ad653cb00f4e7baf38218c31c07808618373</citedby><cites>FETCH-LOGICAL-c634t-ac9c32d77ebca25017cb5c2445570ad653cb00f4e7baf38218c31c07808618373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877954/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877954/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20458138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freitas, Beatriz C G</creatorcontrib><creatorcontrib>Gereben, Balázs</creatorcontrib><creatorcontrib>Castillo, Melany</creatorcontrib><creatorcontrib>Kalló, Imre</creatorcontrib><creatorcontrib>Zeöld, Anikó</creatorcontrib><creatorcontrib>Egri, Péter</creatorcontrib><creatorcontrib>Liposits, Zsolt</creatorcontrib><creatorcontrib>Zavacki, Ann Marie</creatorcontrib><creatorcontrib>Maciel, Rui M B</creatorcontrib><creatorcontrib>Jo, Sungro</creatorcontrib><creatorcontrib>Singru, Praful</creatorcontrib><creatorcontrib>Sanchez, Edith</creatorcontrib><creatorcontrib>Lechan, Ronald M</creatorcontrib><creatorcontrib>Bianco, Antonio C</creatorcontrib><title>Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.</description><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Biomedical research</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cells - metabolism</subject><subject>Cellular signal transduction</subject><subject>Fashion models</subject><subject>Gene Expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>Hypothyroidism</subject><subject>Hypothyroidism - genetics</subject><subject>Hypothyroidism - metabolism</subject><subject>Hypoxia</subject><subject>Inflammation</subject><subject>Iodide Peroxidase - genetics</subject><subject>Iodide Peroxidase - metabolism</subject><subject>Iodide Peroxidase - physiology</subject><subject>Ischemia</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neuroglia - metabolism</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Thyroid Hormone - genetics</subject><subject>Receptors, Thyroid Hormone - metabolism</subject><subject>Rodentia - genetics</subject><subject>Rodentia - metabolism</subject><subject>Spasticity</subject><subject>Thyroid gland</subject><subject>Thyroid Hormones - genetics</subject><subject>Thyroid Hormones - metabolism</subject><subject>Thyroid Hormones - physiology</subject><subject>Thyroxine - genetics</subject><subject>Thyroxine - metabolism</subject><subject>Triiodothyronine</subject><subject>Triiodothyronine - genetics</subject><subject>Triiodothyronine - metabolism</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNk01rGzEQhpfS0rhuob-gLC3047CpvtbSXgrBpK1LIKVfV6HVzu4qrCVH0pr4mH9euU5CXHwIOghePfMyo5nJspcYHWPMycdv8wXDFeePsgkuS1EIQsXjbIIQwUXFqTjKnoVwgRBmrGRPsyOCWCkwFZPs-rvySntjIQ-ms2owtsvrTd4NRg25hmEoGvBmDU0evTGucbHfeGe3AUpHs1YRQm5hTFoK6CDpcLXyEIJxNjc2jz3k3jVgY157lQRlm7wfl8r-sw_PsyetGgK8uLmn2e_Pp7_mX4uz8y-L-clZoWeUxULpSlPScA61VqREmOu61CQVVHKkmllJdY1Qy4DXqqWCYKEp1ogLJGZYUE6n2aed72qsl9DolJBXg1x5s1R-I50ycv_Fml52bi2J4LwqWTJ4d2Pg3eUIIcqlCdsSlAU3BsnLEjNC2QNISjHhFa4S-fo_8sKNPv1kkHTGGUYisdPszQ7q1ADS2Nal_PTWUp6Q1HfGBEKJKg5Q24akYpyF1iR5jz8-wKfTwNLogwEf9gISE-EqdmoMQS5-_ng4e_5nn317j-1BDbEPbhhjGqCwD77fgdq7EDy0d83DSG73QN7uQUJf3W_2HXg7-PQvvbH_1A</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Freitas, Beatriz C G</creator><creator>Gereben, Balázs</creator><creator>Castillo, Melany</creator><creator>Kalló, Imre</creator><creator>Zeöld, Anikó</creator><creator>Egri, Péter</creator><creator>Liposits, Zsolt</creator><creator>Zavacki, Ann Marie</creator><creator>Maciel, Rui M B</creator><creator>Jo, Sungro</creator><creator>Singru, Praful</creator><creator>Sanchez, Edith</creator><creator>Lechan, Ronald M</creator><creator>Bianco, Antonio C</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100601</creationdate><title>Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells</title><author>Freitas, Beatriz C G ; Gereben, Balázs ; Castillo, Melany ; Kalló, Imre ; Zeöld, Anikó ; Egri, Péter ; Liposits, Zsolt ; Zavacki, Ann Marie ; Maciel, Rui M B ; Jo, Sungro ; Singru, Praful ; Sanchez, Edith ; Lechan, Ronald M ; Bianco, Antonio C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-ac9c32d77ebca25017cb5c2445570ad653cb00f4e7baf38218c31c07808618373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Biomedical research</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cells - metabolism</topic><topic>Cellular signal transduction</topic><topic>Fashion models</topic><topic>Gene Expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>Hypothyroidism</topic><topic>Hypothyroidism - genetics</topic><topic>Hypothyroidism - metabolism</topic><topic>Hypoxia</topic><topic>Inflammation</topic><topic>Iodide Peroxidase - genetics</topic><topic>Iodide Peroxidase - metabolism</topic><topic>Iodide Peroxidase - physiology</topic><topic>Ischemia</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neuroglia - metabolism</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Thyroid Hormone - genetics</topic><topic>Receptors, Thyroid Hormone - metabolism</topic><topic>Rodentia - genetics</topic><topic>Rodentia - metabolism</topic><topic>Spasticity</topic><topic>Thyroid gland</topic><topic>Thyroid Hormones - genetics</topic><topic>Thyroid Hormones - metabolism</topic><topic>Thyroid Hormones - physiology</topic><topic>Thyroxine - genetics</topic><topic>Thyroxine - metabolism</topic><topic>Triiodothyronine</topic><topic>Triiodothyronine - genetics</topic><topic>Triiodothyronine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitas, Beatriz C G</creatorcontrib><creatorcontrib>Gereben, Balázs</creatorcontrib><creatorcontrib>Castillo, Melany</creatorcontrib><creatorcontrib>Kalló, Imre</creatorcontrib><creatorcontrib>Zeöld, Anikó</creatorcontrib><creatorcontrib>Egri, Péter</creatorcontrib><creatorcontrib>Liposits, Zsolt</creatorcontrib><creatorcontrib>Zavacki, Ann Marie</creatorcontrib><creatorcontrib>Maciel, Rui M B</creatorcontrib><creatorcontrib>Jo, Sungro</creatorcontrib><creatorcontrib>Singru, Praful</creatorcontrib><creatorcontrib>Sanchez, Edith</creatorcontrib><creatorcontrib>Lechan, Ronald M</creatorcontrib><creatorcontrib>Bianco, Antonio C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitas, Beatriz C G</au><au>Gereben, Balázs</au><au>Castillo, Melany</au><au>Kalló, Imre</au><au>Zeöld, Anikó</au><au>Egri, Péter</au><au>Liposits, Zsolt</au><au>Zavacki, Ann Marie</au><au>Maciel, Rui M B</au><au>Jo, Sungro</au><au>Singru, Praful</au><au>Sanchez, Edith</au><au>Lechan, Ronald M</au><au>Bianco, Antonio C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>120</volume><issue>6</issue><spage>2206</spage><epage>2217</epage><pages>2206-2217</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>20458138</pmid><doi>10.1172/JCI41977</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2010-06, Vol.120 (6), p.2206-2217
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877954
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Astrocytes - metabolism
Biomedical research
Brain
Brain - metabolism
Cells - metabolism
Cellular signal transduction
Fashion models
Gene Expression
Genetic aspects
Health aspects
Humans
Hypothalamus
Hypothyroidism
Hypothyroidism - genetics
Hypothyroidism - metabolism
Hypoxia
Inflammation
Iodide Peroxidase - genetics
Iodide Peroxidase - metabolism
Iodide Peroxidase - physiology
Ischemia
Male
Metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Neuroglia - metabolism
Neurons
Neurons - metabolism
Physiological aspects
Rats
Rats, Sprague-Dawley
Receptors, Thyroid Hormone - genetics
Receptors, Thyroid Hormone - metabolism
Rodentia - genetics
Rodentia - metabolism
Spasticity
Thyroid gland
Thyroid Hormones - genetics
Thyroid Hormones - metabolism
Thyroid Hormones - physiology
Thyroxine - genetics
Thyroxine - metabolism
Triiodothyronine
Triiodothyronine - genetics
Triiodothyronine - metabolism
title Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paracrine%20signaling%20by%20glial%20cell-derived%20triiodothyronine%20activates%20neuronal%20gene%20expression%20in%20the%20rodent%20brain%20and%20human%20cells&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Freitas,%20Beatriz%20C%20G&rft.date=2010-06-01&rft.volume=120&rft.issue=6&rft.spage=2206&rft.epage=2217&rft.pages=2206-2217&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI41977&rft_dat=%3Cgale_pubme%3EA241944800%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=367410873&rft_id=info:pmid/20458138&rft_galeid=A241944800&rfr_iscdi=true