Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays
High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2007-04, Vol.54 (4), p.736-744 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 744 |
---|---|
container_issue | 4 |
container_start_page | 736 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 54 |
creator | Ayers, Sunitha Gillis, Kevin D. Lindau, Manfred Minch, Bradley A. |
description | High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons |
doi_str_mv | 10.1109/TCSI.2006.888777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4155020</ieee_id><sourcerecordid>2338833721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxYMo9kP3giCDC3Ezz5uvSbIRyrTVB5UKreuQmbnTpsyb1GRG6H9vhlcfrYt2lZDzu4ebcwh5R2FFKZgvl_XFesUAqpXWWin1guxTKXUJGqqXy12YUnOm98hBSjcAzACnr8keA0kFlbBP1seY_NVYhL5wRf3j_KL4GSYcJx_S5Kai9rGd_VT0IRYnA7ZTDO01bnzrhuIYp_yQhaMY3V16Q171bkj49v48JL9OTy7r7-XZ-bd1fXRWthWDqaSV45JT0KbhWlfSGVSdxKbTCJ0yKJVmwihHsUJpaCN62UPDlQLXyc5V_JB83frezs0GuzYvG91gb6PfuHhng_P2sTL6a3sV_liWE5KMZ4NP9wYx_J4xTXbjU4vD4EYMc7JcCAOKygx-fhKkmksplBH8ebRSlEkJQmX043_oTZjjmCOzuhJG54YWP9hCbQwpRex3_6Ngl-rtUr1dqrfb6vPIh4e57Ab-dZ2B91vAI-JOzpIEBvwv3aCxAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864980313</pqid></control><display><type>article</type><title>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Ayers, Sunitha ; Gillis, Kevin D. ; Lindau, Manfred ; Minch, Bradley A.</creator><creatorcontrib>Ayers, Sunitha ; Gillis, Kevin D. ; Lindau, Manfred ; Minch, Bradley A.</creatorcontrib><description>High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2006.888777</identifier><identifier>PMID: 20514150</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amperometry ; Amplifiers ; Arrays ; biosensor ; Circuit design ; Circuit testing ; CMOS potentiostat array ; Current measurement ; Design engineering ; Detectors ; Drugs ; electrochemical detector ; Electrodes ; Negative feedback loops ; Oxidation ; Potentiostats ; Sensor arrays ; Time measurement ; Transistors ; Voltage</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2007-04, Vol.54 (4), p.736-744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Copyright (c) 2006 IEEE. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</citedby><cites>FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4155020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4155020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20514150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayers, Sunitha</creatorcontrib><creatorcontrib>Gillis, Kevin D.</creatorcontrib><creatorcontrib>Lindau, Manfred</creatorcontrib><creatorcontrib>Minch, Bradley A.</creatorcontrib><title>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><addtitle>IEEE Trans Circuits Syst I Regul Pap</addtitle><description>High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons</description><subject>Amperometry</subject><subject>Amplifiers</subject><subject>Arrays</subject><subject>biosensor</subject><subject>Circuit design</subject><subject>Circuit testing</subject><subject>CMOS potentiostat array</subject><subject>Current measurement</subject><subject>Design engineering</subject><subject>Detectors</subject><subject>Drugs</subject><subject>electrochemical detector</subject><subject>Electrodes</subject><subject>Negative feedback loops</subject><subject>Oxidation</subject><subject>Potentiostats</subject><subject>Sensor arrays</subject><subject>Time measurement</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1rFTEUxYMo9kP3giCDC3Ezz5uvSbIRyrTVB5UKreuQmbnTpsyb1GRG6H9vhlcfrYt2lZDzu4ebcwh5R2FFKZgvl_XFesUAqpXWWin1guxTKXUJGqqXy12YUnOm98hBSjcAzACnr8keA0kFlbBP1seY_NVYhL5wRf3j_KL4GSYcJx_S5Kai9rGd_VT0IRYnA7ZTDO01bnzrhuIYp_yQhaMY3V16Q171bkj49v48JL9OTy7r7-XZ-bd1fXRWthWDqaSV45JT0KbhWlfSGVSdxKbTCJ0yKJVmwihHsUJpaCN62UPDlQLXyc5V_JB83frezs0GuzYvG91gb6PfuHhng_P2sTL6a3sV_liWE5KMZ4NP9wYx_J4xTXbjU4vD4EYMc7JcCAOKygx-fhKkmksplBH8ebRSlEkJQmX043_oTZjjmCOzuhJG54YWP9hCbQwpRex3_6Ngl-rtUr1dqrfb6vPIh4e57Ab-dZ2B91vAI-JOzpIEBvwv3aCxAQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Ayers, Sunitha</creator><creator>Gillis, Kevin D.</creator><creator>Lindau, Manfred</creator><creator>Minch, Bradley A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070401</creationdate><title>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</title><author>Ayers, Sunitha ; Gillis, Kevin D. ; Lindau, Manfred ; Minch, Bradley A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amperometry</topic><topic>Amplifiers</topic><topic>Arrays</topic><topic>biosensor</topic><topic>Circuit design</topic><topic>Circuit testing</topic><topic>CMOS potentiostat array</topic><topic>Current measurement</topic><topic>Design engineering</topic><topic>Detectors</topic><topic>Drugs</topic><topic>electrochemical detector</topic><topic>Electrodes</topic><topic>Negative feedback loops</topic><topic>Oxidation</topic><topic>Potentiostats</topic><topic>Sensor arrays</topic><topic>Time measurement</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayers, Sunitha</creatorcontrib><creatorcontrib>Gillis, Kevin D.</creatorcontrib><creatorcontrib>Lindau, Manfred</creatorcontrib><creatorcontrib>Minch, Bradley A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayers, Sunitha</au><au>Gillis, Kevin D.</au><au>Lindau, Manfred</au><au>Minch, Bradley A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><addtitle>IEEE Trans Circuits Syst I Regul Pap</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>54</volume><issue>4</issue><spage>736</spage><epage>744</epage><pages>736-744</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20514150</pmid><doi>10.1109/TCSI.2006.888777</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2007-04, Vol.54 (4), p.736-744 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877523 |
source | IEEE Electronic Library (IEL) |
subjects | Amperometry Amplifiers Arrays biosensor Circuit design Circuit testing CMOS potentiostat array Current measurement Design engineering Detectors Drugs electrochemical detector Electrodes Negative feedback loops Oxidation Potentiostats Sensor arrays Time measurement Transistors Voltage |
title | Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20CMOS%20Potentiostat%20Circuit%20for%20Electrochemical%20Detector%20Arrays&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Ayers,%20Sunitha&rft.date=2007-04-01&rft.volume=54&rft.issue=4&rft.spage=736&rft.epage=744&rft.pages=736-744&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2006.888777&rft_dat=%3Cproquest_RIE%3E2338833721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864980313&rft_id=info:pmid/20514150&rft_ieee_id=4155020&rfr_iscdi=true |