Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays

High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2007-04, Vol.54 (4), p.736-744
Hauptverfasser: Ayers, Sunitha, Gillis, Kevin D., Lindau, Manfred, Minch, Bradley A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 4
container_start_page 736
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 54
creator Ayers, Sunitha
Gillis, Kevin D.
Lindau, Manfred
Minch, Bradley A.
description High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons
doi_str_mv 10.1109/TCSI.2006.888777
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4155020</ieee_id><sourcerecordid>2338833721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxYMo9kP3giCDC3Ezz5uvSbIRyrTVB5UKreuQmbnTpsyb1GRG6H9vhlcfrYt2lZDzu4ebcwh5R2FFKZgvl_XFesUAqpXWWin1guxTKXUJGqqXy12YUnOm98hBSjcAzACnr8keA0kFlbBP1seY_NVYhL5wRf3j_KL4GSYcJx_S5Kai9rGd_VT0IRYnA7ZTDO01bnzrhuIYp_yQhaMY3V16Q171bkj49v48JL9OTy7r7-XZ-bd1fXRWthWDqaSV45JT0KbhWlfSGVSdxKbTCJ0yKJVmwihHsUJpaCN62UPDlQLXyc5V_JB83frezs0GuzYvG91gb6PfuHhng_P2sTL6a3sV_liWE5KMZ4NP9wYx_J4xTXbjU4vD4EYMc7JcCAOKygx-fhKkmksplBH8ebRSlEkJQmX043_oTZjjmCOzuhJG54YWP9hCbQwpRex3_6Ngl-rtUr1dqrfb6vPIh4e57Ab-dZ2B91vAI-JOzpIEBvwv3aCxAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864980313</pqid></control><display><type>article</type><title>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Ayers, Sunitha ; Gillis, Kevin D. ; Lindau, Manfred ; Minch, Bradley A.</creator><creatorcontrib>Ayers, Sunitha ; Gillis, Kevin D. ; Lindau, Manfred ; Minch, Bradley A.</creatorcontrib><description>High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2006.888777</identifier><identifier>PMID: 20514150</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amperometry ; Amplifiers ; Arrays ; biosensor ; Circuit design ; Circuit testing ; CMOS potentiostat array ; Current measurement ; Design engineering ; Detectors ; Drugs ; electrochemical detector ; Electrodes ; Negative feedback loops ; Oxidation ; Potentiostats ; Sensor arrays ; Time measurement ; Transistors ; Voltage</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2007-04, Vol.54 (4), p.736-744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Copyright (c) 2006 IEEE. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</citedby><cites>FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4155020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4155020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20514150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayers, Sunitha</creatorcontrib><creatorcontrib>Gillis, Kevin D.</creatorcontrib><creatorcontrib>Lindau, Manfred</creatorcontrib><creatorcontrib>Minch, Bradley A.</creatorcontrib><title>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><addtitle>IEEE Trans Circuits Syst I Regul Pap</addtitle><description>High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons</description><subject>Amperometry</subject><subject>Amplifiers</subject><subject>Arrays</subject><subject>biosensor</subject><subject>Circuit design</subject><subject>Circuit testing</subject><subject>CMOS potentiostat array</subject><subject>Current measurement</subject><subject>Design engineering</subject><subject>Detectors</subject><subject>Drugs</subject><subject>electrochemical detector</subject><subject>Electrodes</subject><subject>Negative feedback loops</subject><subject>Oxidation</subject><subject>Potentiostats</subject><subject>Sensor arrays</subject><subject>Time measurement</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1rFTEUxYMo9kP3giCDC3Ezz5uvSbIRyrTVB5UKreuQmbnTpsyb1GRG6H9vhlcfrYt2lZDzu4ebcwh5R2FFKZgvl_XFesUAqpXWWin1guxTKXUJGqqXy12YUnOm98hBSjcAzACnr8keA0kFlbBP1seY_NVYhL5wRf3j_KL4GSYcJx_S5Kai9rGd_VT0IRYnA7ZTDO01bnzrhuIYp_yQhaMY3V16Q171bkj49v48JL9OTy7r7-XZ-bd1fXRWthWDqaSV45JT0KbhWlfSGVSdxKbTCJ0yKJVmwihHsUJpaCN62UPDlQLXyc5V_JB83frezs0GuzYvG91gb6PfuHhng_P2sTL6a3sV_liWE5KMZ4NP9wYx_J4xTXbjU4vD4EYMc7JcCAOKygx-fhKkmksplBH8ebRSlEkJQmX043_oTZjjmCOzuhJG54YWP9hCbQwpRex3_6Ngl-rtUr1dqrfb6vPIh4e57Ab-dZ2B91vAI-JOzpIEBvwv3aCxAQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Ayers, Sunitha</creator><creator>Gillis, Kevin D.</creator><creator>Lindau, Manfred</creator><creator>Minch, Bradley A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070401</creationdate><title>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</title><author>Ayers, Sunitha ; Gillis, Kevin D. ; Lindau, Manfred ; Minch, Bradley A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-16a3531089b38865a9e7d5ebd8e0d79e5782497a1e6e591b4f5f0b3770ad5da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amperometry</topic><topic>Amplifiers</topic><topic>Arrays</topic><topic>biosensor</topic><topic>Circuit design</topic><topic>Circuit testing</topic><topic>CMOS potentiostat array</topic><topic>Current measurement</topic><topic>Design engineering</topic><topic>Detectors</topic><topic>Drugs</topic><topic>electrochemical detector</topic><topic>Electrodes</topic><topic>Negative feedback loops</topic><topic>Oxidation</topic><topic>Potentiostats</topic><topic>Sensor arrays</topic><topic>Time measurement</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayers, Sunitha</creatorcontrib><creatorcontrib>Gillis, Kevin D.</creatorcontrib><creatorcontrib>Lindau, Manfred</creatorcontrib><creatorcontrib>Minch, Bradley A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayers, Sunitha</au><au>Gillis, Kevin D.</au><au>Lindau, Manfred</au><au>Minch, Bradley A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><addtitle>IEEE Trans Circuits Syst I Regul Pap</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>54</volume><issue>4</issue><spage>736</spage><epage>744</epage><pages>736-744</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times10 6 electrons</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20514150</pmid><doi>10.1109/TCSI.2006.888777</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2007-04, Vol.54 (4), p.736-744
issn 1549-8328
1558-0806
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877523
source IEEE Electronic Library (IEL)
subjects Amperometry
Amplifiers
Arrays
biosensor
Circuit design
Circuit testing
CMOS potentiostat array
Current measurement
Design engineering
Detectors
Drugs
electrochemical detector
Electrodes
Negative feedback loops
Oxidation
Potentiostats
Sensor arrays
Time measurement
Transistors
Voltage
title Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20CMOS%20Potentiostat%20Circuit%20for%20Electrochemical%20Detector%20Arrays&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Ayers,%20Sunitha&rft.date=2007-04-01&rft.volume=54&rft.issue=4&rft.spage=736&rft.epage=744&rft.pages=736-744&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2006.888777&rft_dat=%3Cproquest_RIE%3E2338833721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864980313&rft_id=info:pmid/20514150&rft_ieee_id=4155020&rfr_iscdi=true