A Bayesian MCMC approach to survival analysis with doubly-censored data

Doubly-censored data refers to time to event data for which both the originating and failure times are censored. In studies involving AIDS incubation time or survival after dementia onset, for example, data are frequently doubly-censored because the date of the originating event is interval-censored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2010-08, Vol.54 (8), p.1921-1929
1. Verfasser: Yu, Binbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1929
container_issue 8
container_start_page 1921
container_title Computational statistics & data analysis
container_volume 54
creator Yu, Binbing
description Doubly-censored data refers to time to event data for which both the originating and failure times are censored. In studies involving AIDS incubation time or survival after dementia onset, for example, data are frequently doubly-censored because the date of the originating event is interval-censored and the date of the failure event usually is right-censored. The primary interest is in the distribution of elapsed times between the originating and failure events and its relationship to exposures and risk factors. The estimating equation approach [Sun et al. (1999). Regression analysis of doubly censored failure time data with applications to AIDS studies. Biometrics 55, 909–914] and its extensions assume the same distribution of originating event times for all subjects. This paper demonstrates the importance of utilizing additional covariates to impute originating event times, i.e., more accurate estimation of originating event times may lead to less biased parameter estimates for elapsed time. The Bayesian MCMC method is shown to be a suitable approach for analyzing doubly-censored data and allows a rich class of survival models. The performance of the proposed estimation method is compared to that of other conventional methods through simulations. Two examples, an AIDS cohort study and a population-based dementia study, are used for illustration. Sample code is shown in Appendix.
doi_str_mv 10.1016/j.csda.2010.02.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310000903</els_id><sourcerecordid>753752663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-e5c782015a85a47dbf719a939041f7e781b3c1329039772f275f436423b3c8a43</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEYsvCH-CAckFwSfFn7EgIaalgQeqKC5ytqTOhrtIk2ElR_z0TWgpcVvKMpfEzr2b8Ztlzzpac8fLNbulTDUvBqMAEHf0gW3BrRGGkFg-zBUGmqJSRV9mTlHaMMaGMfZxdCaa5ksoustub_D0cMQXo8rvV3SqHYYg9-G0-9nma4iEcoM2hg_aYQsp_hnGb1_20aY-Fxy71Eeu8hhGeZo8aaBM-O9_X2bePH76uPhXrL7efVzfrwmtbjgVqbywNrMFqUKbeNIZXUMmKKd4YNJZvpOdSVExWxohGGN0oWSohqW5Byevs3Ul3mDZ7rGmGMULrhhj2EI-uh-D-f-nC1n3vD05Y0uOzwKuzQOx_TJhGtw_JY9tCh_2UnNHSaFGWksjX95LcSq2VqUpLqDihPvYpRWwuA3HmZq_czs1eudkrxwQdTU3rU1PEAf2lAxFntAN3cBK0onSk-N0paT0JlmKg4JXgjlLltuOe5F78-zMXvT9eE_DyDEDy0DYROh_SX04YpYzmxL09cUg-HgJGl3zAzmMdIvrR1X24b61fb5vKTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835547968</pqid></control><display><type>article</type><title>A Bayesian MCMC approach to survival analysis with doubly-censored data</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Yu, Binbing</creator><creatorcontrib>Yu, Binbing</creatorcontrib><description>Doubly-censored data refers to time to event data for which both the originating and failure times are censored. In studies involving AIDS incubation time or survival after dementia onset, for example, data are frequently doubly-censored because the date of the originating event is interval-censored and the date of the failure event usually is right-censored. The primary interest is in the distribution of elapsed times between the originating and failure events and its relationship to exposures and risk factors. The estimating equation approach [Sun et al. (1999). Regression analysis of doubly censored failure time data with applications to AIDS studies. Biometrics 55, 909–914] and its extensions assume the same distribution of originating event times for all subjects. This paper demonstrates the importance of utilizing additional covariates to impute originating event times, i.e., more accurate estimation of originating event times may lead to less biased parameter estimates for elapsed time. The Bayesian MCMC method is shown to be a suitable approach for analyzing doubly-censored data and allows a rich class of survival models. The performance of the proposed estimation method is compared to that of other conventional methods through simulations. Two examples, an AIDS cohort study and a population-based dementia study, are used for illustration. Sample code is shown in Appendix.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.02.025</identifier><identifier>PMID: 20514348</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acquired immunodeficiency syndrome ; AIDS ; AIDS Dementia Doubly censored data Incubation period MCMC Midpoint imputation ; Applications ; Bayesian analysis ; Dementia ; Doubly censored data ; Estimating ; Exact sciences and technology ; Failure ; Failure times ; General topics ; Incubation period ; Mathematical models ; Mathematics ; MCMC ; Medical sciences ; Midpoint imputation ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Survival</subject><ispartof>Computational statistics &amp; data analysis, 2010-08, Vol.54 (8), p.1921-1929</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-e5c782015a85a47dbf719a939041f7e781b3c1329039772f275f436423b3c8a43</citedby><cites>FETCH-LOGICAL-c586t-e5c782015a85a47dbf719a939041f7e781b3c1329039772f275f436423b3c8a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947310000903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22744751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20514348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a8_3ap_3a1921-1929.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Binbing</creatorcontrib><title>A Bayesian MCMC approach to survival analysis with doubly-censored data</title><title>Computational statistics &amp; data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>Doubly-censored data refers to time to event data for which both the originating and failure times are censored. In studies involving AIDS incubation time or survival after dementia onset, for example, data are frequently doubly-censored because the date of the originating event is interval-censored and the date of the failure event usually is right-censored. The primary interest is in the distribution of elapsed times between the originating and failure events and its relationship to exposures and risk factors. The estimating equation approach [Sun et al. (1999). Regression analysis of doubly censored failure time data with applications to AIDS studies. Biometrics 55, 909–914] and its extensions assume the same distribution of originating event times for all subjects. This paper demonstrates the importance of utilizing additional covariates to impute originating event times, i.e., more accurate estimation of originating event times may lead to less biased parameter estimates for elapsed time. The Bayesian MCMC method is shown to be a suitable approach for analyzing doubly-censored data and allows a rich class of survival models. The performance of the proposed estimation method is compared to that of other conventional methods through simulations. Two examples, an AIDS cohort study and a population-based dementia study, are used for illustration. Sample code is shown in Appendix.</description><subject>Acquired immunodeficiency syndrome</subject><subject>AIDS</subject><subject>AIDS Dementia Doubly censored data Incubation period MCMC Midpoint imputation</subject><subject>Applications</subject><subject>Bayesian analysis</subject><subject>Dementia</subject><subject>Doubly censored data</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Failure times</subject><subject>General topics</subject><subject>Incubation period</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>MCMC</subject><subject>Medical sciences</subject><subject>Midpoint imputation</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Survival</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kU2P0zAQhiMEYsvCH-CAckFwSfFn7EgIaalgQeqKC5ytqTOhrtIk2ElR_z0TWgpcVvKMpfEzr2b8Ztlzzpac8fLNbulTDUvBqMAEHf0gW3BrRGGkFg-zBUGmqJSRV9mTlHaMMaGMfZxdCaa5ksoustub_D0cMQXo8rvV3SqHYYg9-G0-9nma4iEcoM2hg_aYQsp_hnGb1_20aY-Fxy71Eeu8hhGeZo8aaBM-O9_X2bePH76uPhXrL7efVzfrwmtbjgVqbywNrMFqUKbeNIZXUMmKKd4YNJZvpOdSVExWxohGGN0oWSohqW5Byevs3Ul3mDZ7rGmGMULrhhj2EI-uh-D-f-nC1n3vD05Y0uOzwKuzQOx_TJhGtw_JY9tCh_2UnNHSaFGWksjX95LcSq2VqUpLqDihPvYpRWwuA3HmZq_czs1eudkrxwQdTU3rU1PEAf2lAxFntAN3cBK0onSk-N0paT0JlmKg4JXgjlLltuOe5F78-zMXvT9eE_DyDEDy0DYROh_SX04YpYzmxL09cUg-HgJGl3zAzmMdIvrR1X24b61fb5vKTg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Yu, Binbing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20100801</creationdate><title>A Bayesian MCMC approach to survival analysis with doubly-censored data</title><author>Yu, Binbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-e5c782015a85a47dbf719a939041f7e781b3c1329039772f275f436423b3c8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acquired immunodeficiency syndrome</topic><topic>AIDS</topic><topic>AIDS Dementia Doubly censored data Incubation period MCMC Midpoint imputation</topic><topic>Applications</topic><topic>Bayesian analysis</topic><topic>Dementia</topic><topic>Doubly censored data</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Failure times</topic><topic>General topics</topic><topic>Incubation period</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>MCMC</topic><topic>Medical sciences</topic><topic>Midpoint imputation</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Binbing</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Binbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian MCMC approach to survival analysis with doubly-censored data</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>54</volume><issue>8</issue><spage>1921</spage><epage>1929</epage><pages>1921-1929</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Doubly-censored data refers to time to event data for which both the originating and failure times are censored. In studies involving AIDS incubation time or survival after dementia onset, for example, data are frequently doubly-censored because the date of the originating event is interval-censored and the date of the failure event usually is right-censored. The primary interest is in the distribution of elapsed times between the originating and failure events and its relationship to exposures and risk factors. The estimating equation approach [Sun et al. (1999). Regression analysis of doubly censored failure time data with applications to AIDS studies. Biometrics 55, 909–914] and its extensions assume the same distribution of originating event times for all subjects. This paper demonstrates the importance of utilizing additional covariates to impute originating event times, i.e., more accurate estimation of originating event times may lead to less biased parameter estimates for elapsed time. The Bayesian MCMC method is shown to be a suitable approach for analyzing doubly-censored data and allows a rich class of survival models. The performance of the proposed estimation method is compared to that of other conventional methods through simulations. Two examples, an AIDS cohort study and a population-based dementia study, are used for illustration. Sample code is shown in Appendix.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20514348</pmid><doi>10.1016/j.csda.2010.02.025</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2010-08, Vol.54 (8), p.1921-1929
issn 0167-9473
1872-7352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2877214
source RePEc; Elsevier ScienceDirect Journals
subjects Acquired immunodeficiency syndrome
AIDS
AIDS Dementia Doubly censored data Incubation period MCMC Midpoint imputation
Applications
Bayesian analysis
Dementia
Doubly censored data
Estimating
Exact sciences and technology
Failure
Failure times
General topics
Incubation period
Mathematical models
Mathematics
MCMC
Medical sciences
Midpoint imputation
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Sciences and techniques of general use
Statistics
Survival
title A Bayesian MCMC approach to survival analysis with doubly-censored data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20MCMC%20approach%20to%20survival%20analysis%20with%20doubly-censored%20data&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Yu,%20Binbing&rft.date=2010-08-01&rft.volume=54&rft.issue=8&rft.spage=1921&rft.epage=1929&rft.pages=1921-1929&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.02.025&rft_dat=%3Cproquest_pubme%3E753752663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835547968&rft_id=info:pmid/20514348&rft_els_id=S0167947310000903&rfr_iscdi=true