INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART
The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a h...
Gespeichert in:
Veröffentlicht in: | Cardiovascular diseases 1974, Vol.1 (4), p.343-368 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 4 |
container_start_page | 343 |
container_title | Cardiovascular diseases |
container_volume | 1 |
creator | Huffman, Fred N. Hagen, Kenneth G. Whalen, Robert L. Fuqua, John M. Norman, John C. |
description | The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_287500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859458212</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1100-601850f5dc7de2bbed59101402ef4f41897d947eae17525a97d1174c0865c6253</originalsourceid><addsrcrecordid>eNpVkDFPwzAQhT2AaCn8BZSRJZLt2Ik9MFhpSi2FOnKNGC03cSAobUrSIvHvidSCYDo93X333t0FmELIozCiJJ6A62F4hxCzhPErMEEUI8pjNgW5XBktUqULpTORB8tMmGAu12tZCCPVKlho9RSIQIu5VHKtjCqysFAvmc7mgdBGLmQqT5w2N-Cydu3gb891Bp4XmUmXYa4eZSrycI8QhGEMEaOwplWZVB5vNr6iHEFEIPY1qQliPKk4SbzzKKGYulEilJASspiWMabRDDyc9u6Pm62vSr879K61-77Zuv7Ldq6x_zu75s2-dp92vJ9COPL3Z77vPo5-ONhtM5S-bd3Od8fBjvE4oQwjPI7e_bX69fj5YPQNj0dlHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859458212</pqid></control><display><type>article</type><title>INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART</title><source>PubMed Central</source><creator>Huffman, Fred N. ; Hagen, Kenneth G. ; Whalen, Robert L. ; Fuqua, John M. ; Norman, John C.</creator><creatorcontrib>Huffman, Fred N. ; Hagen, Kenneth G. ; Whalen, Robert L. ; Fuqua, John M. ; Norman, John C.</creatorcontrib><description>The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.</description><identifier>ISSN: 0093-3546</identifier><identifier>PMID: 15215968</identifier><language>eng</language><publisher>United States</publisher><ispartof>Cardiovascular diseases, 1974, Vol.1 (4), p.343-368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC287500/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC287500/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15215968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huffman, Fred N.</creatorcontrib><creatorcontrib>Hagen, Kenneth G.</creatorcontrib><creatorcontrib>Whalen, Robert L.</creatorcontrib><creatorcontrib>Fuqua, John M.</creatorcontrib><creatorcontrib>Norman, John C.</creatorcontrib><title>INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART</title><title>Cardiovascular diseases</title><addtitle>Cardiovasc Dis</addtitle><description>The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.</description><issn>0093-3546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNpVkDFPwzAQhT2AaCn8BZSRJZLt2Ik9MFhpSi2FOnKNGC03cSAobUrSIvHvidSCYDo93X333t0FmELIozCiJJ6A62F4hxCzhPErMEEUI8pjNgW5XBktUqULpTORB8tMmGAu12tZCCPVKlho9RSIQIu5VHKtjCqysFAvmc7mgdBGLmQqT5w2N-Cydu3gb891Bp4XmUmXYa4eZSrycI8QhGEMEaOwplWZVB5vNr6iHEFEIPY1qQliPKk4SbzzKKGYulEilJASspiWMabRDDyc9u6Pm62vSr879K61-77Zuv7Ldq6x_zu75s2-dp92vJ9COPL3Z77vPo5-ONhtM5S-bd3Od8fBjvE4oQwjPI7e_bX69fj5YPQNj0dlHA</recordid><startdate>1974</startdate><enddate>1974</enddate><creator>Huffman, Fred N.</creator><creator>Hagen, Kenneth G.</creator><creator>Whalen, Robert L.</creator><creator>Fuqua, John M.</creator><creator>Norman, John C.</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1974</creationdate><title>INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART</title><author>Huffman, Fred N. ; Hagen, Kenneth G. ; Whalen, Robert L. ; Fuqua, John M. ; Norman, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1100-601850f5dc7de2bbed59101402ef4f41897d947eae17525a97d1174c0865c6253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Huffman, Fred N.</creatorcontrib><creatorcontrib>Hagen, Kenneth G.</creatorcontrib><creatorcontrib>Whalen, Robert L.</creatorcontrib><creatorcontrib>Fuqua, John M.</creatorcontrib><creatorcontrib>Norman, John C.</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huffman, Fred N.</au><au>Hagen, Kenneth G.</au><au>Whalen, Robert L.</au><au>Fuqua, John M.</au><au>Norman, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART</atitle><jtitle>Cardiovascular diseases</jtitle><addtitle>Cardiovasc Dis</addtitle><date>1974</date><risdate>1974</risdate><volume>1</volume><issue>4</issue><spage>343</spage><epage>368</epage><pages>343-368</pages><issn>0093-3546</issn><abstract>The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.</abstract><cop>United States</cop><pmid>15215968</pmid><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3546 |
ispartof | Cardiovascular diseases, 1974, Vol.1 (4), p.343-368 |
issn | 0093-3546 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_287500 |
source | PubMed Central |
title | INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INTRACORPOREAL%20HEAT%20DISSIPATION%20FROM%20A%20RADIOISOTOPE-POWERED%20ARTIFICIAL%20HEART&rft.jtitle=Cardiovascular%20diseases&rft.au=Huffman,%20Fred%20N.&rft.date=1974&rft.volume=1&rft.issue=4&rft.spage=343&rft.epage=368&rft.pages=343-368&rft.issn=0093-3546&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1859458212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859458212&rft_id=info:pmid/15215968&rfr_iscdi=true |