Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance

Despite the unique brain imaging capabilities and advantages of functional near-infrared spectroscopy (fNIRS), including portability and comprehensive hemodynamic measurement, widespread acceptance in the neuroimaging community has been hampered by low spatial resolution and image localization error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2010-03, Vol.15 (2), p.026006-026006
Hauptverfasser: White, Brian R, Culver, Joseph P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026006
container_issue 2
container_start_page 026006
container_title Journal of Biomedical Optics
container_volume 15
creator White, Brian R
Culver, Joseph P
description Despite the unique brain imaging capabilities and advantages of functional near-infrared spectroscopy (fNIRS), including portability and comprehensive hemodynamic measurement, widespread acceptance in the neuroimaging community has been hampered by low spatial resolution and image localization errors. While recent technical developments such as high-density diffuse optical tomography (HD-DOT) have, in principle, been shown to have superior in silico image quality, the majority of optical imaging studies are still conducted with sparse fNIRS arrays, perhaps partially because the performance increases of HD-DOT appear incremental. Without a quantitative comparative analysis between HD-DOT and fNIRS, using both simulation and neuroimaging, the implications of the new HD-DOT technology have been difficult to judge. We present a quantitative comparison of HD-DOT and two commonly used fNIRS geometries using (1) standard metrics of image quality, (2) simulated brain mapping tasks, and (3) visual cortex mapping results in adult humans. The results show that better resolution and lower positional errors are achieved with HD-DOT and that these improvements provide a substantial advancement in neuroimaging capability. In particular, we demonstrate that HD-DOT enables detailed phase-encoded retinotopic mapping, while sparse arrays are limited to imaging individual block-design visual stimuli.
doi_str_mv 10.1117/1.3368999
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2874047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889405308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-c4331fb8d2e8a694dd25b364e9f89b6e891011435a62c8b966e16e7f392a1df93</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEoqVw4A8g3xCHFI8dOzYHJKhoC6q0IMHZcpLxrlFiBzuJtP-etLus4MTFftL7_DTjVxQvgV4CQP0WLjmXSmv9qDgHIWnJmILHq6aKl1xKdVY8y_knpVRJLZ8WZ4xWQjMB50X4Ntsw-clOfkGCi-3nVcZAoiM7v92VHYbspz3pvHNzRhLHybe2J1Mc4jbZcbd_R3wgi18iSZhjPz88t6Ejgx1HH7ZkxORiGmxo8XnxxNk-44vjfVH8uP70_eq2vNvcfL76cFe2AsRUthXn4BrVMVRW6qrrmGi4rFA7pRuJSgMFqLiwkrWq0VIiSKwd18xC5zS_KN4fcse5GbBrMUzJ9mZMfrBpb6L15l8n-J3ZxsUwVVe0qteA18eAFH_NmCcz-Nxi39uAcc5GKV1RwdcP_h9Zcy4AmJYr-eZAtinmnNCd5gFq7os0YI5Fruyrvxc4kX-aWwF2APLo8WR_-bj5er1Zi6Yg7k_KKJOUygcN_Dd366j0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733511296</pqid></control><display><type>article</type><title>Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>White, Brian R ; Culver, Joseph P</creator><creatorcontrib>White, Brian R ; Culver, Joseph P</creatorcontrib><description>Despite the unique brain imaging capabilities and advantages of functional near-infrared spectroscopy (fNIRS), including portability and comprehensive hemodynamic measurement, widespread acceptance in the neuroimaging community has been hampered by low spatial resolution and image localization errors. While recent technical developments such as high-density diffuse optical tomography (HD-DOT) have, in principle, been shown to have superior in silico image quality, the majority of optical imaging studies are still conducted with sparse fNIRS arrays, perhaps partially because the performance increases of HD-DOT appear incremental. Without a quantitative comparative analysis between HD-DOT and fNIRS, using both simulation and neuroimaging, the implications of the new HD-DOT technology have been difficult to judge. We present a quantitative comparison of HD-DOT and two commonly used fNIRS geometries using (1) standard metrics of image quality, (2) simulated brain mapping tasks, and (3) visual cortex mapping results in adult humans. The results show that better resolution and lower positional errors are achieved with HD-DOT and that these improvements provide a substantial advancement in neuroimaging capability. In particular, we demonstrate that HD-DOT enables detailed phase-encoded retinotopic mapping, while sparse arrays are limited to imaging individual block-design visual stimuli.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.3368999</identifier><identifier>PMID: 20459251</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Algorithms ; Arrays ; Biocompatibility ; Biomedical materials ; Brain Mapping - methods ; Evoked Potentials, Visual - physiology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging ; In vivo testing ; In vivo tests ; Mapping ; Reproducibility of Results ; Research Papers: Imaging ; Sensitivity and Specificity ; Surgical implants ; Tomography, Optical - methods ; Visual Cortex - physiology</subject><ispartof>Journal of Biomedical Optics, 2010-03, Vol.15 (2), p.026006-026006</ispartof><rights>2011 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.</rights><rights>Copyright © 2010 Society of Photo-Optical Instrumentation Engineers 2010 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-c4331fb8d2e8a694dd25b364e9f89b6e891011435a62c8b966e16e7f392a1df93</citedby><cites>FETCH-LOGICAL-c515t-c4331fb8d2e8a694dd25b364e9f89b6e891011435a62c8b966e16e7f392a1df93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874047/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874047/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20459251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Brian R</creatorcontrib><creatorcontrib>Culver, Joseph P</creatorcontrib><title>Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>Despite the unique brain imaging capabilities and advantages of functional near-infrared spectroscopy (fNIRS), including portability and comprehensive hemodynamic measurement, widespread acceptance in the neuroimaging community has been hampered by low spatial resolution and image localization errors. While recent technical developments such as high-density diffuse optical tomography (HD-DOT) have, in principle, been shown to have superior in silico image quality, the majority of optical imaging studies are still conducted with sparse fNIRS arrays, perhaps partially because the performance increases of HD-DOT appear incremental. Without a quantitative comparative analysis between HD-DOT and fNIRS, using both simulation and neuroimaging, the implications of the new HD-DOT technology have been difficult to judge. We present a quantitative comparison of HD-DOT and two commonly used fNIRS geometries using (1) standard metrics of image quality, (2) simulated brain mapping tasks, and (3) visual cortex mapping results in adult humans. The results show that better resolution and lower positional errors are achieved with HD-DOT and that these improvements provide a substantial advancement in neuroimaging capability. In particular, we demonstrate that HD-DOT enables detailed phase-encoded retinotopic mapping, while sparse arrays are limited to imaging individual block-design visual stimuli.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Brain Mapping - methods</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Mapping</subject><subject>Reproducibility of Results</subject><subject>Research Papers: Imaging</subject><subject>Sensitivity and Specificity</subject><subject>Surgical implants</subject><subject>Tomography, Optical - methods</subject><subject>Visual Cortex - physiology</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEoqVw4A8g3xCHFI8dOzYHJKhoC6q0IMHZcpLxrlFiBzuJtP-etLus4MTFftL7_DTjVxQvgV4CQP0WLjmXSmv9qDgHIWnJmILHq6aKl1xKdVY8y_knpVRJLZ8WZ4xWQjMB50X4Ntsw-clOfkGCi-3nVcZAoiM7v92VHYbspz3pvHNzRhLHybe2J1Mc4jbZcbd_R3wgi18iSZhjPz88t6Ejgx1HH7ZkxORiGmxo8XnxxNk-44vjfVH8uP70_eq2vNvcfL76cFe2AsRUthXn4BrVMVRW6qrrmGi4rFA7pRuJSgMFqLiwkrWq0VIiSKwd18xC5zS_KN4fcse5GbBrMUzJ9mZMfrBpb6L15l8n-J3ZxsUwVVe0qteA18eAFH_NmCcz-Nxi39uAcc5GKV1RwdcP_h9Zcy4AmJYr-eZAtinmnNCd5gFq7os0YI5Fruyrvxc4kX-aWwF2APLo8WR_-bj5er1Zi6Yg7k_KKJOUygcN_Dd366j0</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>White, Brian R</creator><creator>Culver, Joseph P</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100301</creationdate><title>Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance</title><author>White, Brian R ; Culver, Joseph P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-c4331fb8d2e8a694dd25b364e9f89b6e891011435a62c8b966e16e7f392a1df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Brain Mapping - methods</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Mapping</topic><topic>Reproducibility of Results</topic><topic>Research Papers: Imaging</topic><topic>Sensitivity and Specificity</topic><topic>Surgical implants</topic><topic>Tomography, Optical - methods</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Brian R</creatorcontrib><creatorcontrib>Culver, Joseph P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Brian R</au><au>Culver, Joseph P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>15</volume><issue>2</issue><spage>026006</spage><epage>026006</epage><pages>026006-026006</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>Despite the unique brain imaging capabilities and advantages of functional near-infrared spectroscopy (fNIRS), including portability and comprehensive hemodynamic measurement, widespread acceptance in the neuroimaging community has been hampered by low spatial resolution and image localization errors. While recent technical developments such as high-density diffuse optical tomography (HD-DOT) have, in principle, been shown to have superior in silico image quality, the majority of optical imaging studies are still conducted with sparse fNIRS arrays, perhaps partially because the performance increases of HD-DOT appear incremental. Without a quantitative comparative analysis between HD-DOT and fNIRS, using both simulation and neuroimaging, the implications of the new HD-DOT technology have been difficult to judge. We present a quantitative comparison of HD-DOT and two commonly used fNIRS geometries using (1) standard metrics of image quality, (2) simulated brain mapping tasks, and (3) visual cortex mapping results in adult humans. The results show that better resolution and lower positional errors are achieved with HD-DOT and that these improvements provide a substantial advancement in neuroimaging capability. In particular, we demonstrate that HD-DOT enables detailed phase-encoded retinotopic mapping, while sparse arrays are limited to imaging individual block-design visual stimuli.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>20459251</pmid><doi>10.1117/1.3368999</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2010-03, Vol.15 (2), p.026006-026006
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2874047
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Arrays
Biocompatibility
Biomedical materials
Brain Mapping - methods
Evoked Potentials, Visual - physiology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging
In vivo testing
In vivo tests
Mapping
Reproducibility of Results
Research Papers: Imaging
Sensitivity and Specificity
Surgical implants
Tomography, Optical - methods
Visual Cortex - physiology
title Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20evaluation%20of%20high-density%20diffuse%20optical%20tomography:%20in%20vivo%20resolution%20and%20mapping%20performance&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=White,%20Brian%20R&rft.date=2010-03-01&rft.volume=15&rft.issue=2&rft.spage=026006&rft.epage=026006&rft.pages=026006-026006&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.3368999&rft_dat=%3Cproquest_pubme%3E889405308%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733511296&rft_id=info:pmid/20459251&rfr_iscdi=true