The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study

Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemiology and infection 2008-03, Vol.136 (3), p.289-298
Hauptverfasser: TEMIME, L., HEJBLUM, G., SETBON, M., VALLERON, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 3
container_start_page 289
container_title Epidemiology and infection
container_volume 136
creator TEMIME, L.
HEJBLUM, G.
SETBON, M.
VALLERON, A. J.
description Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.
doi_str_mv 10.1017/S0950268807009442
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2870826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0950268807009442</cupid><jstor_id>30221476</jstor_id><sourcerecordid>30221476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdR7Fr9AV4oQVD0YjVfkw8vhFK0FRekWullyGTO7GY7M1mT2eL-ezPdZasV9SYJeZ9zwnnzFsVjgl8TTOSbr1iXmAqlsMRYc07vFBPChZ5yjvXdYjLK01E_KB6ktMQZokreLw6IlEJKTSfF5fkCUPTJ93Pku5V1AwoN6uywgLx4Z1vUhRra9hroEax8DZ0PbZhv3iLbD77yIXMoQvJpsL2D8Qg2ugWyCVnkbAKUhnW9eVjca2yb4NFuPyy-fXh_fnw6nX0--Xh8NJs6UYphyh3FmFaNU5YyLjU0DVGM1LpWmNqKVwQsgGCaECdICdQ6TSqpXN2U3DLNDot3276rddVB7aAfom3NKvrOxo0J1pvfld4vzDxcmWwOVlTkBq-2DRa3yk6PZma8w4xiwiS_Ipl9sXsshu9rSIPpfHLZMNtDWCcjMS0lV-q_IMWC8pKMr7_8J0iEyN_NFaEZfXYLXYZ17LO5uV3JNdMCZ4hsIRdDShGa_UgEmzFH5o8c5Zqnv1p4U7ELTgae7wCbckiamH_epz2X7aElu7byyZZbpiHEvc4wpYTLUZ9u9Rwe-LHXbbw0QjJZGnFyZr5cXKgzrmfmU-bZbhjbVdHXc7gZ-e_j_ARRwffp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205493960</pqid></control><display><type>article</type><title>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>TEMIME, L. ; HEJBLUM, G. ; SETBON, M. ; VALLERON, A. J.</creator><creatorcontrib>TEMIME, L. ; HEJBLUM, G. ; SETBON, M. ; VALLERON, A. J.</creatorcontrib><description>Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.</description><identifier>ISSN: 0950-2688</identifier><identifier>EISSN: 1469-4409</identifier><identifier>DOI: 10.1017/S0950268807009442</identifier><identifier>PMID: 17767792</identifier><identifier>CODEN: EPINEU</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anti-Bacterial Agents - therapeutic use ; Antibiotic resistance ; Antibiotics ; Applications ; Bacteria ; Bacteriology ; Bibliographic citations ; Biological and medical sciences ; Biology ; Citation impact ; Clinical medicine ; Communicable Diseases - drug therapy ; Communicable Diseases - epidemiology ; Computer Science ; Decision making ; Disease models ; Disease transmission ; Drug Resistance, Microbial ; Epidemiology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global Health ; Humans ; Industrialized nations ; Infectious diseases ; Life Sciences ; Mathematical models ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Microbiology ; Modeling and Simulation ; Models, Statistical ; Public health ; Research methodology ; Review ; Review Article ; Santé publique et épidémiologie ; Staphylococcus infections ; Statistics</subject><ispartof>Epidemiology and infection, 2008-03, Vol.136 (3), p.289-298</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>Copyright 2008 Cambridge University Press</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Cambridge University Press 2007 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</citedby><cites>FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</cites><orcidid>0000-0002-8850-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30221476$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30221476$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20125326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17767792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnam.hal.science/hal-03201374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>TEMIME, L.</creatorcontrib><creatorcontrib>HEJBLUM, G.</creatorcontrib><creatorcontrib>SETBON, M.</creatorcontrib><creatorcontrib>VALLERON, A. J.</creatorcontrib><title>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</title><title>Epidemiology and infection</title><addtitle>Epidemiol. Infect</addtitle><description>Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.</description><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Applications</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Bibliographic citations</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Citation impact</subject><subject>Clinical medicine</subject><subject>Communicable Diseases - drug therapy</subject><subject>Communicable Diseases - epidemiology</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Disease models</subject><subject>Disease transmission</subject><subject>Drug Resistance, Microbial</subject><subject>Epidemiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global Health</subject><subject>Humans</subject><subject>Industrialized nations</subject><subject>Infectious diseases</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Microbiology</subject><subject>Modeling and Simulation</subject><subject>Models, Statistical</subject><subject>Public health</subject><subject>Research methodology</subject><subject>Review</subject><subject>Review Article</subject><subject>Santé publique et épidémiologie</subject><subject>Staphylococcus infections</subject><subject>Statistics</subject><issn>0950-2688</issn><issn>1469-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkl1rFDEUhgdR7Fr9AV4oQVD0YjVfkw8vhFK0FRekWullyGTO7GY7M1mT2eL-ezPdZasV9SYJeZ9zwnnzFsVjgl8TTOSbr1iXmAqlsMRYc07vFBPChZ5yjvXdYjLK01E_KB6ktMQZokreLw6IlEJKTSfF5fkCUPTJ93Pku5V1AwoN6uywgLx4Z1vUhRra9hroEax8DZ0PbZhv3iLbD77yIXMoQvJpsL2D8Qg2ugWyCVnkbAKUhnW9eVjca2yb4NFuPyy-fXh_fnw6nX0--Xh8NJs6UYphyh3FmFaNU5YyLjU0DVGM1LpWmNqKVwQsgGCaECdICdQ6TSqpXN2U3DLNDot3276rddVB7aAfom3NKvrOxo0J1pvfld4vzDxcmWwOVlTkBq-2DRa3yk6PZma8w4xiwiS_Ipl9sXsshu9rSIPpfHLZMNtDWCcjMS0lV-q_IMWC8pKMr7_8J0iEyN_NFaEZfXYLXYZ17LO5uV3JNdMCZ4hsIRdDShGa_UgEmzFH5o8c5Zqnv1p4U7ELTgae7wCbckiamH_epz2X7aElu7byyZZbpiHEvc4wpYTLUZ9u9Rwe-LHXbbw0QjJZGnFyZr5cXKgzrmfmU-bZbhjbVdHXc7gZ-e_j_ARRwffp</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>TEMIME, L.</creator><creator>HEJBLUM, G.</creator><creator>SETBON, M.</creator><creator>VALLERON, A. J.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8850-5403</orcidid></search><sort><creationdate>20080301</creationdate><title>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</title><author>TEMIME, L. ; HEJBLUM, G. ; SETBON, M. ; VALLERON, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Applications</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Bibliographic citations</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Citation impact</topic><topic>Clinical medicine</topic><topic>Communicable Diseases - drug therapy</topic><topic>Communicable Diseases - epidemiology</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Disease models</topic><topic>Disease transmission</topic><topic>Drug Resistance, Microbial</topic><topic>Epidemiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global Health</topic><topic>Humans</topic><topic>Industrialized nations</topic><topic>Infectious diseases</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Microbiology</topic><topic>Modeling and Simulation</topic><topic>Models, Statistical</topic><topic>Public health</topic><topic>Research methodology</topic><topic>Review</topic><topic>Review Article</topic><topic>Santé publique et épidémiologie</topic><topic>Staphylococcus infections</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TEMIME, L.</creatorcontrib><creatorcontrib>HEJBLUM, G.</creatorcontrib><creatorcontrib>SETBON, M.</creatorcontrib><creatorcontrib>VALLERON, A. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEMIME, L.</au><au>HEJBLUM, G.</au><au>SETBON, M.</au><au>VALLERON, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</atitle><jtitle>Epidemiology and infection</jtitle><addtitle>Epidemiol. Infect</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>136</volume><issue>3</issue><spage>289</spage><epage>298</epage><pages>289-298</pages><issn>0950-2688</issn><eissn>1469-4409</eissn><coden>EPINEU</coden><abstract>Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>17767792</pmid><doi>10.1017/S0950268807009442</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8850-5403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-2688
ispartof Epidemiology and infection, 2008-03, Vol.136 (3), p.289-298
issn 0950-2688
1469-4409
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2870826
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Anti-Bacterial Agents - therapeutic use
Antibiotic resistance
Antibiotics
Applications
Bacteria
Bacteriology
Bibliographic citations
Biological and medical sciences
Biology
Citation impact
Clinical medicine
Communicable Diseases - drug therapy
Communicable Diseases - epidemiology
Computer Science
Decision making
Disease models
Disease transmission
Drug Resistance, Microbial
Epidemiology
Fundamental and applied biological sciences. Psychology
General aspects
Global Health
Humans
Industrialized nations
Infectious diseases
Life Sciences
Mathematical models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Microbiology
Modeling and Simulation
Models, Statistical
Public health
Research methodology
Review
Review Article
Santé publique et épidémiologie
Staphylococcus infections
Statistics
title The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20rising%20impact%20of%20mathematical%20modelling%20in%20epidemiology:%20antibiotic%20resistance%20research%20as%20a%20case%20study&rft.jtitle=Epidemiology%20and%20infection&rft.au=TEMIME,%20L.&rft.date=2008-03-01&rft.volume=136&rft.issue=3&rft.spage=289&rft.epage=298&rft.pages=289-298&rft.issn=0950-2688&rft.eissn=1469-4409&rft.coden=EPINEU&rft_id=info:doi/10.1017/S0950268807009442&rft_dat=%3Cjstor_pubme%3E30221476%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205493960&rft_id=info:pmid/17767792&rft_cupid=10_1017_S0950268807009442&rft_jstor_id=30221476&rfr_iscdi=true