The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study
Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using...
Gespeichert in:
Veröffentlicht in: | Epidemiology and infection 2008-03, Vol.136 (3), p.289-298 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 3 |
container_start_page | 289 |
container_title | Epidemiology and infection |
container_volume | 136 |
creator | TEMIME, L. HEJBLUM, G. SETBON, M. VALLERON, A. J. |
description | Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance. |
doi_str_mv | 10.1017/S0950268807009442 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2870826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0950268807009442</cupid><jstor_id>30221476</jstor_id><sourcerecordid>30221476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdR7Fr9AV4oQVD0YjVfkw8vhFK0FRekWullyGTO7GY7M1mT2eL-ezPdZasV9SYJeZ9zwnnzFsVjgl8TTOSbr1iXmAqlsMRYc07vFBPChZ5yjvXdYjLK01E_KB6ktMQZokreLw6IlEJKTSfF5fkCUPTJ93Pku5V1AwoN6uywgLx4Z1vUhRra9hroEax8DZ0PbZhv3iLbD77yIXMoQvJpsL2D8Qg2ugWyCVnkbAKUhnW9eVjca2yb4NFuPyy-fXh_fnw6nX0--Xh8NJs6UYphyh3FmFaNU5YyLjU0DVGM1LpWmNqKVwQsgGCaECdICdQ6TSqpXN2U3DLNDot3276rddVB7aAfom3NKvrOxo0J1pvfld4vzDxcmWwOVlTkBq-2DRa3yk6PZma8w4xiwiS_Ipl9sXsshu9rSIPpfHLZMNtDWCcjMS0lV-q_IMWC8pKMr7_8J0iEyN_NFaEZfXYLXYZ17LO5uV3JNdMCZ4hsIRdDShGa_UgEmzFH5o8c5Zqnv1p4U7ELTgae7wCbckiamH_epz2X7aElu7byyZZbpiHEvc4wpYTLUZ9u9Rwe-LHXbbw0QjJZGnFyZr5cXKgzrmfmU-bZbhjbVdHXc7gZ-e_j_ARRwffp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205493960</pqid></control><display><type>article</type><title>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>TEMIME, L. ; HEJBLUM, G. ; SETBON, M. ; VALLERON, A. J.</creator><creatorcontrib>TEMIME, L. ; HEJBLUM, G. ; SETBON, M. ; VALLERON, A. J.</creatorcontrib><description>Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.</description><identifier>ISSN: 0950-2688</identifier><identifier>EISSN: 1469-4409</identifier><identifier>DOI: 10.1017/S0950268807009442</identifier><identifier>PMID: 17767792</identifier><identifier>CODEN: EPINEU</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anti-Bacterial Agents - therapeutic use ; Antibiotic resistance ; Antibiotics ; Applications ; Bacteria ; Bacteriology ; Bibliographic citations ; Biological and medical sciences ; Biology ; Citation impact ; Clinical medicine ; Communicable Diseases - drug therapy ; Communicable Diseases - epidemiology ; Computer Science ; Decision making ; Disease models ; Disease transmission ; Drug Resistance, Microbial ; Epidemiology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global Health ; Humans ; Industrialized nations ; Infectious diseases ; Life Sciences ; Mathematical models ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Microbiology ; Modeling and Simulation ; Models, Statistical ; Public health ; Research methodology ; Review ; Review Article ; Santé publique et épidémiologie ; Staphylococcus infections ; Statistics</subject><ispartof>Epidemiology and infection, 2008-03, Vol.136 (3), p.289-298</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>Copyright 2008 Cambridge University Press</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Cambridge University Press 2007 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</citedby><cites>FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</cites><orcidid>0000-0002-8850-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30221476$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30221476$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20125326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17767792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnam.hal.science/hal-03201374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>TEMIME, L.</creatorcontrib><creatorcontrib>HEJBLUM, G.</creatorcontrib><creatorcontrib>SETBON, M.</creatorcontrib><creatorcontrib>VALLERON, A. J.</creatorcontrib><title>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</title><title>Epidemiology and infection</title><addtitle>Epidemiol. Infect</addtitle><description>Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.</description><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Applications</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Bibliographic citations</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Citation impact</subject><subject>Clinical medicine</subject><subject>Communicable Diseases - drug therapy</subject><subject>Communicable Diseases - epidemiology</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Disease models</subject><subject>Disease transmission</subject><subject>Drug Resistance, Microbial</subject><subject>Epidemiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global Health</subject><subject>Humans</subject><subject>Industrialized nations</subject><subject>Infectious diseases</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Microbiology</subject><subject>Modeling and Simulation</subject><subject>Models, Statistical</subject><subject>Public health</subject><subject>Research methodology</subject><subject>Review</subject><subject>Review Article</subject><subject>Santé publique et épidémiologie</subject><subject>Staphylococcus infections</subject><subject>Statistics</subject><issn>0950-2688</issn><issn>1469-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkl1rFDEUhgdR7Fr9AV4oQVD0YjVfkw8vhFK0FRekWullyGTO7GY7M1mT2eL-ezPdZasV9SYJeZ9zwnnzFsVjgl8TTOSbr1iXmAqlsMRYc07vFBPChZ5yjvXdYjLK01E_KB6ktMQZokreLw6IlEJKTSfF5fkCUPTJ93Pku5V1AwoN6uywgLx4Z1vUhRra9hroEax8DZ0PbZhv3iLbD77yIXMoQvJpsL2D8Qg2ugWyCVnkbAKUhnW9eVjca2yb4NFuPyy-fXh_fnw6nX0--Xh8NJs6UYphyh3FmFaNU5YyLjU0DVGM1LpWmNqKVwQsgGCaECdICdQ6TSqpXN2U3DLNDot3276rddVB7aAfom3NKvrOxo0J1pvfld4vzDxcmWwOVlTkBq-2DRa3yk6PZma8w4xiwiS_Ipl9sXsshu9rSIPpfHLZMNtDWCcjMS0lV-q_IMWC8pKMr7_8J0iEyN_NFaEZfXYLXYZ17LO5uV3JNdMCZ4hsIRdDShGa_UgEmzFH5o8c5Zqnv1p4U7ELTgae7wCbckiamH_epz2X7aElu7byyZZbpiHEvc4wpYTLUZ9u9Rwe-LHXbbw0QjJZGnFyZr5cXKgzrmfmU-bZbhjbVdHXc7gZ-e_j_ARRwffp</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>TEMIME, L.</creator><creator>HEJBLUM, G.</creator><creator>SETBON, M.</creator><creator>VALLERON, A. J.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8850-5403</orcidid></search><sort><creationdate>20080301</creationdate><title>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</title><author>TEMIME, L. ; HEJBLUM, G. ; SETBON, M. ; VALLERON, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-4c2002bfc8a23479eff1831d9d802ab4b1eaee63911c615e2ac91b78cdf54a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Applications</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Bibliographic citations</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Citation impact</topic><topic>Clinical medicine</topic><topic>Communicable Diseases - drug therapy</topic><topic>Communicable Diseases - epidemiology</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Disease models</topic><topic>Disease transmission</topic><topic>Drug Resistance, Microbial</topic><topic>Epidemiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global Health</topic><topic>Humans</topic><topic>Industrialized nations</topic><topic>Infectious diseases</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Microbiology</topic><topic>Modeling and Simulation</topic><topic>Models, Statistical</topic><topic>Public health</topic><topic>Research methodology</topic><topic>Review</topic><topic>Review Article</topic><topic>Santé publique et épidémiologie</topic><topic>Staphylococcus infections</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TEMIME, L.</creatorcontrib><creatorcontrib>HEJBLUM, G.</creatorcontrib><creatorcontrib>SETBON, M.</creatorcontrib><creatorcontrib>VALLERON, A. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEMIME, L.</au><au>HEJBLUM, G.</au><au>SETBON, M.</au><au>VALLERON, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study</atitle><jtitle>Epidemiology and infection</jtitle><addtitle>Epidemiol. Infect</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>136</volume><issue>3</issue><spage>289</spage><epage>298</epage><pages>289-298</pages><issn>0950-2688</issn><eissn>1469-4409</eissn><coden>EPINEU</coden><abstract>Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>17767792</pmid><doi>10.1017/S0950268807009442</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8850-5403</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-2688 |
ispartof | Epidemiology and infection, 2008-03, Vol.136 (3), p.289-298 |
issn | 0950-2688 1469-4409 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2870826 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Anti-Bacterial Agents - therapeutic use Antibiotic resistance Antibiotics Applications Bacteria Bacteriology Bibliographic citations Biological and medical sciences Biology Citation impact Clinical medicine Communicable Diseases - drug therapy Communicable Diseases - epidemiology Computer Science Decision making Disease models Disease transmission Drug Resistance, Microbial Epidemiology Fundamental and applied biological sciences. Psychology General aspects Global Health Humans Industrialized nations Infectious diseases Life Sciences Mathematical models Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Microbiology Modeling and Simulation Models, Statistical Public health Research methodology Review Review Article Santé publique et épidémiologie Staphylococcus infections Statistics |
title | The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20rising%20impact%20of%20mathematical%20modelling%20in%20epidemiology:%20antibiotic%20resistance%20research%20as%20a%20case%20study&rft.jtitle=Epidemiology%20and%20infection&rft.au=TEMIME,%20L.&rft.date=2008-03-01&rft.volume=136&rft.issue=3&rft.spage=289&rft.epage=298&rft.pages=289-298&rft.issn=0950-2688&rft.eissn=1469-4409&rft.coden=EPINEU&rft_id=info:doi/10.1017/S0950268807009442&rft_dat=%3Cjstor_pubme%3E30221476%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205493960&rft_id=info:pmid/17767792&rft_cupid=10_1017_S0950268807009442&rft_jstor_id=30221476&rfr_iscdi=true |